scholarly journals Monte Carlo study of temperature-dependent non-diffusive thermal transport in Si nanowires

2017 ◽  
Vol 124 ◽  
pp. 17-21 ◽  
Author(s):  
Lei Ma ◽  
Riguo Mei ◽  
Mengmeng Liu ◽  
Xuxin Zhao ◽  
Qixing Wu ◽  
...  
2011 ◽  
Vol 284-286 ◽  
pp. 392-395
Author(s):  
Zan Wang ◽  
Hong Yu Zhu ◽  
Yi Wu Ruan

Based on the classical diffuse mismatch model (DMM), the dedicated Monte Carlo model for Si/Ge superlattice is proposed and the method to cope with the scattering at the interface is provided. In this model, phonons transport between two different materials can be taken as the movements between the different phonon dispersion relationships. If there is a corresponding position in the other material, the phonon with a given frequency will be able to pass through the interface, otherwise it will be reflected.


2005 ◽  
Author(s):  
Yunfei Chen ◽  
Deyu Li ◽  
Jennifer R. Lukes ◽  
Zhonghua Ni

One-dimensional (1D) materials such as various kinds of nanowires and nanotubes have attracted considerable attention due to their potential applications in electronic and energy conversion devices. The thermal transport phenomena in these nanowires and nanotubes could be significantly different from that in bulk material due to boundary scattering, phonon dispersion relation change, and quantum confinement. It is very important to understand the thermal transport phenomena in these materials so that we can apply them in the thermal design of microelectronic, photonic, and energy conversion devices. While intensive experimental efforts are being carried out to investigate the thermal transport in nanowires and nanotube, an accurate numerical prediction can help the understanding of phonon scattering mechanisms, which is of fundamental theoretical significance. A Monte Carlo simulation was developed and applied to investigate phonon transport in single crystalline Si nanowires. The Phonon-phonon Normal (N) and Umklapp (U) scattering processes were modeled with a genetic algorithm to satisfy both the energy and the momentum conservation. The scattering rates of N and U scattering processes were given from the first perturbation theory. Ballistic phonon transport was modeled with the code and the numerical results fit the theoretical prediction very well. The thermal conductivity of bulk Si was then simulated and good agreement was achieved with the experimental data. Si nanowire thermal conductivity was then studied and compared with some recent experimental results. In order to study the confinement effects on phonon transport in nanowires, two different phonon dispersions, one based on bulk Si and the other solved from the elastic wave theory for nanowires, were adopted in the simulation. The discrepancy from the simulations based on different phonon dispersions increases as the nanowire diameter decreases, which suggests that the confinement effect is significant when the nanowire diameter goes down to tens nanometer range. It was found that the U scattering probability engaged in Si nanowires was increased from that in bulk Si due to the decrease of the frequency gap between different modes and the reduced phonon group velocity. Simulation results suggest that the dispersion relation for nanowire solved from the elasticity theory should be used to evaluate nanowire thermal conductivity as the nanowire diameter reduced to tens nanometer.


Methodology ◽  
2013 ◽  
Vol 9 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Holger Steinmetz

Although the use of structural equation modeling has increased during the last decades, the typical procedure to investigate mean differences across groups is still to create an observed composite score from several indicators and to compare the composite’s mean across the groups. Whereas the structural equation modeling literature has emphasized that a comparison of latent means presupposes equal factor loadings and indicator intercepts for most of the indicators (i.e., partial invariance), it is still unknown if partial invariance is sufficient when relying on observed composites. This Monte-Carlo study investigated whether one or two unequal factor loadings and indicator intercepts in a composite can lead to wrong conclusions regarding latent mean differences. Results show that unequal indicator intercepts substantially affect the composite mean difference and the probability of a significant composite difference. In contrast, unequal factor loadings demonstrate only small effects. It is concluded that analyses of composite differences are only warranted in conditions of full measurement invariance, and the author recommends the analyses of latent mean differences with structural equation modeling instead.


2011 ◽  
Author(s):  
Patrick J. Rosopa ◽  
Amber N. Schroeder ◽  
Jessica Doll

1993 ◽  
Vol 3 (9) ◽  
pp. 1719-1728
Author(s):  
P. Dollfus ◽  
P. Hesto ◽  
S. Galdin ◽  
C. Brisset

Sign in / Sign up

Export Citation Format

Share Document