scholarly journals Data-driven modeling for boiling heat transfer: Using deep neural networks and high-fidelity simulation results

2018 ◽  
Vol 144 ◽  
pp. 305-320 ◽  
Author(s):  
Yang Liu ◽  
Nam Dinh ◽  
Yohei Sato ◽  
Bojan Niceno
2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Erik Buhmann ◽  
Sascha Diefenbacher ◽  
Engin Eren ◽  
Frank Gaede ◽  
Gregor Kasieczka ◽  
...  

AbstractAccurate simulation of physical processes is crucial for the success of modern particle physics. However, simulating the development and interaction of particle showers with calorimeter detectors is a time consuming process and drives the computing needs of large experiments at the LHC and future colliders. Recently, generative machine learning models based on deep neural networks have shown promise in speeding up this task by several orders of magnitude. We investigate the use of a new architecture—the Bounded Information Bottleneck Autoencoder—for modelling electromagnetic showers in the central region of the Silicon-Tungsten calorimeter of the proposed International Large Detector. Combined with a novel second post-processing network, this approach achieves an accurate simulation of differential distributions including for the first time the shape of the minimum-ionizing-particle peak compared to a full Geant4 simulation for a high-granularity calorimeter with 27k simulated channels. The results are validated by comparing to established architectures. Our results further strengthen the case of using generative networks for fast simulation and demonstrate that physically relevant differential distributions can be described with high accuracy.


Solar Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 48-56
Author(s):  
Max Pargmann ◽  
Daniel Maldonado Quinto ◽  
Peter Schwarzbözl ◽  
Robert Pitz-Paal

2021 ◽  
Vol 42 (12) ◽  
pp. 124101
Author(s):  
Thomas Hirtz ◽  
Steyn Huurman ◽  
He Tian ◽  
Yi Yang ◽  
Tian-Ling Ren

Abstract In a world where data is increasingly important for making breakthroughs, microelectronics is a field where data is sparse and hard to acquire. Only a few entities have the infrastructure that is required to automate the fabrication and testing of semiconductor devices. This infrastructure is crucial for generating sufficient data for the use of new information technologies. This situation generates a cleavage between most of the researchers and the industry. To address this issue, this paper will introduce a widely applicable approach for creating custom datasets using simulation tools and parallel computing. The multi-I–V curves that we obtained were processed simultaneously using convolutional neural networks, which gave us the ability to predict a full set of device characteristics with a single inference. We prove the potential of this approach through two concrete examples of useful deep learning models that were trained using the generated data. We believe that this work can act as a bridge between the state-of-the-art of data-driven methods and more classical semiconductor research, such as device engineering, yield engineering or process monitoring. Moreover, this research gives the opportunity to anybody to start experimenting with deep neural networks and machine learning in the field of microelectronics, without the need for expensive experimentation infrastructure.


2012 ◽  
Vol 490-495 ◽  
pp. 2381-2385
Author(s):  
Bao Lan Xiao ◽  
Wei Ming Wu ◽  
Xiao Li Yu ◽  
Guo Dong Lu

The excellent thermal-hydraulic performances of oil cooler are the strong guaranty for automotives’ normal operation. In this study, the thermal-hydraulic performances of compact oil cooler units with different fin size parameters are numerical simulated. According to simulation results, combined with neural networks method, the optimal fin size parameters are determined. Based on this, the effects of different fin arrange layouts on performances are also studied, and optimal layouts for different requirements for flow resistance and heat transfer performances are put forward. This optimal design method can play a guidance role for the designer and manufacturer of heat exchangers.


Sign in / Sign up

Export Citation Format

Share Document