Pre-cooling of air by water spray evaporation to improve thermal performance of lithium battery pack

2019 ◽  
Vol 163 ◽  
pp. 114401 ◽  
Author(s):  
Yue Yang ◽  
Lijun Yang ◽  
Xiaoze Du ◽  
Yongping Yang
Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1448
Author(s):  
Nam-Gyu Lim ◽  
Jae-Yeol Kim ◽  
Seongjun Lee

Battery applications, such as electric vehicles, electric propulsion ships, and energy storage systems, are developing rapidly, and battery management issues are gaining attention. In this application field, a battery system with a high capacity and high power in which numerous battery cells are connected in series and parallel is used. Therefore, research on a battery management system (BMS) to which various algorithms are applied for efficient use and safe operation of batteries is being conducted. In general, maintenance/replacement of multi-series/multiple parallel battery systems is only possible when there is no load current, or the entire system is shut down. However, if the circulating current generated by the voltage difference between the newly added battery and the existing battery pack is less than the allowable current of the system, the new battery can be connected while the system is running, which is called hot swapping. The circulating current generated during the hot-swap operation is determined by the battery’s state of charge (SOC), the parallel configuration of the battery system, temperature, aging, operating point, and differences in the load current. Therefore, since there is a limit to formulating a circulating current that changes in size according to these various conditions, this paper presents a circulating current estimation method, using an artificial neural network (ANN). The ANN model for estimating the hot-swap circulating current is designed for a 1S4P lithium battery pack system, consisting of one series and four parallel cells. The circulating current of the ANN model proposed in this paper is experimentally verified to be able to estimate the actual value within a 6% error range.


2021 ◽  
Vol 38 (11) ◽  
pp. 118201
Author(s):  
Jianglong Du ◽  
Haolan Tao ◽  
Yuxin Chen ◽  
Xiaodong Yuan ◽  
Cheng Lian ◽  
...  

Lithium-ion battery packs are made by many batteries, and the difficulty in heat transfer can cause many safety issues. It is important to evaluate thermal performance of a battery pack in designing process. Here, a multiscale method combining a pseudo-two-dimensional model of individual battery and three-dimensional computational fluid dynamics is employed to describe heat generation and transfer in a battery pack. The effect of battery arrangement on the thermal performance of battery packs is investigated. We discuss the air-cooling effect of the pack with four battery arrangements which include one square arrangement, one stagger arrangement and two trapezoid arrangements. In addition, the air-cooling strategy is studied by observing temperature distribution of the battery pack. It is found that the square arrangement is the structure with the best air-cooling effect, and the cooling effect is best when the cold air inlet is at the top of the battery pack. We hope that this work can provide theoretical guidance for thermal management of lithium-ion battery packs.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022071
Author(s):  
Qingyuan Fang

Abstract Aiming at the uneven heat generation in various parts of the electric vehicle lithium battery pack during the discharge process, the heat generation mechanism is studied, and the lithium battery catalytic performance model is established to obtain the current density and heat generation rate distribution law of the lithium battery cell on the cell. The thermal model can simulate the thermal behavior of the battery under application conditions. Study the laws of battery heat production, heat transfer, and heat dissipation, and calculate the temperature changes inside and on the battery and the temperature field information in real time to provide a basis for the design and optimization of the battery and battery pack thermal management system. The simulation results show that the established model can predict the heating distribution and temperature field of the internal layered structure of the lithium-ion battery, which is helpful for the subsequent analysis of key influencing factors.


Author(s):  
Shashwat Bakhshi ◽  
Prahit Dubey ◽  
A. K. Srouji ◽  
Zenan Wu

Abstract An effective cooling mechanism is the backbone of a good automotive battery thermal management system (BTMS). In addition to prevention of extreme events such as thermal runaway, an automotive BTMS must be able to efficiently tackle aggressive environmental temperatures, and/or discharge and charge conditions during electric vehicle operation. Moreover, electrical performance and cycle life of the battery modules and packs are closely tied to the battery temperatures and thermal gradients, which increase with increase in C-Rates. In order to keep the battery temperatures to be under the operational temperature limit, it is crucial that the selected cooling mechanism provides efficient transport of the heat generated by the battery modules and packs to the cooling media under all discharge and charge conditions. Owing to its efficient thermal performance, liquid cooling is preferred by most electric vehicle manufacturers for battery thermal management. This usually incorporates battery modules exchanging heat with a flowing coolant via cold plate or cooling channels during operation. The current work aims to investigate different liquid cooling configurations and compare their relative thermal performance during operation of a high energy density Pouch Cell. The four configurations selected for this comparison are (1) Face cooling, (2) Single-Sided cooling, (3) Double-Sided cooling, and (4) a Hybrid cooling configuration. Test setups comprising of a commercially available 9 A-h NMC Pouch cell, cold plates, pump, heat exchanger, refrigeration cooling unit, and thermal sensors are built for the above four cooling configurations. During the tests, the selected cell is discharged at different discharge rates (C-Rates), i.e., 3C, 4C, and 5C. The overall cell temperatures and thermal gradient across the cell are measured using T-type thermocouples for the four cooling configurations. In order to capture the thermal gradient across the Pouch cell accurately, several thermocouples on the face of the cell are installed using a thermal interface material. Results show the superiority of Face cooling configuration in terms of overall thermal performance under all considered test conditions. Lowest cell temperatures and thermal gradients across the cell are observed for the Face cooling configuration, while highest temperatures and thermal gradients are observed for the Single-Sided cooling configuration. Much improved thermal performance is also observed in the case of the Hybrid cooling configuration as compared to the Single and Double-Sided cooling configurations. As implementation of the Face cooling configuration at the battery pack level may result in higher weight and cost of the battery pack, owing to its good thermal performance and straightforward scaling to battery pack level, the proposed hybrid liquid cooling mechanism provides a viable alternative to Face cooling for battery thermal management.


Sign in / Sign up

Export Citation Format

Share Document