CFD simulation of fine particle removal in flue gas condensing heat exchanger

2020 ◽  
Vol 174 ◽  
pp. 115290 ◽  
Author(s):  
Kai Li ◽  
Enlu Wang ◽  
Qi Wang ◽  
Naveed Husnain ◽  
Deli Li
2014 ◽  
Vol 35 (4) ◽  
pp. 447-461 ◽  
Author(s):  
Paweł Rączka ◽  
Kazimierz Wójs

Abstract The paper presents the algorithms for a flue gas/water waste-heat exchanger with and without condensation of water vapour contained in flue gas with experimental validation of theoretical results. The algorithms were used for calculations of the area of a heat exchanger using waste heat from a pulverised brown coal fired steam boiler operating in a power unit with a capacity of 900 MWe. In calculation of the condensing part, the calculation results obtained with two algorithms were compared (Colburn-Hobler and VDI algorithms). The VDI algorithm allowed to take into account the condensation of water vapour for flue gas temperatures above the temperature of the water dew point. Thanks to this, it was possible to calculate more accurately the required heat transfer area, which resulted in its reduction by 19 %. In addition, the influence of the mass transfer on the heat transfer area was taken into account, which contributed to a further reduction in the calculated size of the heat exchanger - in total by 28% as compared with the Colburn-Hobler algorithm. The presented VDI algorithm was used to design a 312 kW pilot-scale condensing heat exchanger installed in PGE Belchatow power plant. Obtained experimental results are in a good agreement with calculated values.


Author(s):  
Kwangkook Jeong ◽  
Harun Bilirgen ◽  
Edward Levy

Power plants release a large amount of water vapor into the atmosphere through the stack. The flue gas can be a potential source for obtaining much needed cooling water for a power plant. If a power plant could recover and reuse a portion of this moisture, it could reduce its total cooling water intake requirement. One of the most practical way to recover water from flue gas is to use a condensing heat exchanger. The power plant could also recover latent heat due to condensation as well as sensible heat due to lowering the flue gas exit temperature. Additionally, harmful acids released from the stack can be reduced in a condensing heat exchanger by acid condensation. Condensation of vapors in flue gas is a complicated phenomenon since heat and mass transfer of water vapor and various acids simultaneously occur in the presence of non-condensable gases such as nitrogen and oxygen. Design of a condenser depends on the knowledge and understanding of the heat and mass transfer processes. A computer program for numerical simulations of water (H2O) and sulfuric acid (H2SO4) condensation in a flue gas condensing heat exchanger was developed using MATLAB. Governing equations based on mass and energy balances for the system were derived to predict variables such as flue gas exit temperature, cooling water outlet temperature, mole fraction and condensation rates of water and sulfuric acid vapors. The equations were solved using an iterative solution technique with calculations of heat and mass transfer coefficients and physical properties. An experimental study was carried out in order to yield data for validation of modeling results. Parametric studies for both modeling and experiments were performed to investigate the effects of parameters such as flue gas flow rate, cooling water flow rate, inlet cooling water temperature and tube configurations (bare and finned tubes) on condensation efficiency. Predicted results of water and sulfuric acid vapor condensation were compared with experimental data for model validation, and this showed agreement between experimental data and predictions to within a few percent. The most important parameters affecting performance of the condensing heat exchangers was the ratio of cooling water to flue gas flow rates, since this determines how much heat the cooling water can absorb. The computer program simultaneously calculates both water vapor condensation and sulfuric acid condensation in flue gas along downstream. Modeling results for prediction of sulfuric acid vapor concentration in the flue gas were compared with measured data obtained by the controlled condensation method. An analytical model of sulfuric acid condensation for oil-firing showed two trends — steep reduction within the high temperature heat exchanger and smooth reduction within lower temperature heat exchanger, which is in agreement with experimental data.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1310
Author(s):  
Robertas Poškas ◽  
Arūnas Sirvydas ◽  
Vladislavas Kulkovas ◽  
Hussam Jouhara ◽  
Povilas Poškas ◽  
...  

In order for the operation of the condensing heat exchanger to be efficient, the flue gas temperature at the inlet to the heat exchanger should be reduced so that condensation can start from the very beginning of the exchanger. A possible way to reduce the flue gas temperature is the injection of water into the flue gas flow. Injected water additionally moistens the flue gas and increases its level of humidity. Therefore, more favorable conditions are created for condensation and heat transfer. The results presented in the second paper of the series on condensation heat transfer indicate that water injection into the flue gas flow drastically changes the distribution of temperatures along the heat exchanger and enhances local total heat transfer. The injected water causes an increase in the local total heat transfer by at least two times in comparison with the case when no water is injected. Different temperatures of injected water mainly have a major impact on the local total heat transfer until almost the middle of the model of the condensing heat exchanger. From the middle part until the end, the heat transfer is almost the same at different injected water temperatures.


Author(s):  
Edward Levy ◽  
Harun Bilirgen ◽  
Joshua Charles ◽  
Mark Ness

Heat exchangers, which cool boiler flue gas to temperatures below the water vapor dew point, can be used to capture moisture from flue gas and reduce external water consumption for power plant operations. At the same time, thermal energy removed from the flue gas can be used to improve unit heat rate. Recent data also show that emissions of air toxics from flue gas would be reduced by use of condensing heat exchangers. This paper describes results from a slip stream test of a water cooled condensing heat exchanger system at a power plant with a lignite-fired boiler. The flue gas which flowed through the heat exchangers had been extracted from a duct downstream of the electrostatic precipitator. Measurements were made of flue gas and cooling water temperatures, flue gas water vapor concentrations, and concentrations of elemental and oxidized Hg at the inlet and exit of the heat exchanger system. Condensed water was also collected and analyzed for concentrations of H2SO4 and HCl. Results on the effects of the condensing heat exchanger operating conditions on oxidation and capture of Hg and on the capture of sulfuric and hydrochloric acids are described.


2016 ◽  
Vol 37 (4) ◽  
pp. 529-543 ◽  
Author(s):  
Piotr Szulc ◽  
Tomasz Tietze ◽  
Kazimierz Wójs

Abstract This paper presents studies carried out in a pilot-scale plant for recovery of waste heat from a flue gas which has been built in a lignite-fired power plant. The purpose of the studies was to check the operation of the heat recovery system in a pilot scale, while the purpose of the plant was recovery of waste heat from the flue gas in the form of hot water with a temperature of approx. 90 °C. The main part of the test rig was a condensing heat exchanger designed and built on the basis of laboratory tests conducted by the authors of this paper. Tests conducted on the pilot-scale plant concerned the thermal and flow parameters of the condensing heat exchanger as well as the impact of the volumetric flow rate of the flue gas and the cooling water on the heat flux recovered. Results show that the system with a condensing heat exchanger for recovery of low-temperature waste heat from the flue gas enables the recovery of much higher heat flux as compared with conventional systems without a condensing heat exchanger.


Sign in / Sign up

Export Citation Format

Share Document