Optimization of Fuel/Air Mixing and Combustion Process in a Heavy-duty Diesel Engine Using Fuel Split Device

Author(s):  
Caifeng Hao ◽  
Zhen Lu ◽  
Yizhuo Feng ◽  
Honglin Bai ◽  
Ming Wen ◽  
...  
Author(s):  
Meng Tang ◽  
Yuanjiang Pei ◽  
Hengjie Guo ◽  
Yu Zhang ◽  
Roberto Torelli ◽  
...  

Abstract A design optimization campaign was conducted to search for improved combustion profiles that enhance gasoline compression ignition in a heavy-duty diesel engine with a geometric compression ratio of 17.3. Three-dimensional computational fluid dynamics simulations were employed using the software package CONVERGE. A large-scale design of experiments (DoE) approach was used for the optimization. The main parameters explored include geometric features, injector specifications, and swirl motion. Both stepped-lip bowls and re-entrant bowls were included in the optimization effort in order to assess their respective performance implications. A total of 256 design candidates were prepared using the software package CAESES for automated and simultaneous geometry generation and combustion recipe perturbation. The design optimization was conducted for three engine load points representing light to medium load conditions. The design candidates were evaluated for fuel efficiency, emissions, fuel-air mixing characteristics, and global combustion behavior. Simulation results show that the optimum designs were all stepped-lip bowls, which exhibited better overall performance than re-entrant bowls due to improvements in fuel-air mixing, as well as reduced heat loss and emissions formation. Improvements in indicated specific fuel consumption of up to 3.2% were achieved while meeting engine-out NOx emission targets of 1–1.5 g/kW·hr. Re-entrant bowls performed worse compared to the baseline design, and significant performance variations occurred across the load points. Specifically, the re-entrant bowls were on par with the stepped-lip bowls under light load conditions, but significant deteriorations occurred under higher load conditions. As a final task, selected optimized designs were then evaluated under simulated full-load conditions.


Author(s):  
Yu Zhang ◽  
Alexander Voice ◽  
Yuanjiang Pei ◽  
Michael Traver ◽  
David Cleary

Gasoline compression ignition (GCI) offers the potential to reduce criteria pollutants while achieving high fuel efficiency in heavy-duty diesel engines. This study aims to investigate the fuel chemical and physical properties effects on GCI operation in a heavy-duty diesel engine through closed-cycle, 3-D computational fluid dynamics (CFD) combustion simulations, investigating both mixing-controlled combustion (MCC) at 18.9 compression ratio (CR) and partially premixed combustion (PPC) at 17.3 CR. For this work, fuel chemical properties were studied in terms of the primary reference fuel (PRF) number (0–91) and the octane sensitivity (0–6) while using a fixed fuel physical surrogate. For the fuel physical properties effects investigation, PRF70 was used as the gas-phase chemical surrogate. Six physical properties were individually perturbed, varying from the gasoline to the diesel range. Combustion simulations were carried out at 1375 RPM and 10 bar brake mean effective pressure (BMEP). Reducing fuel reactivity (or increasing PRF number) was found to influence ignition delay time (IDT) more significantly for PPC than for MCC due to the lower charge temperature and higher EGR rate involved in the PPC mode. 0-D IDT calculations suggested that the fuel reactivity impact on IDT diminished with an increase in temperature. Moreover, higher reactivity gasolines exhibited stronger negative coefficient (NTC) behavior and their IDTs showed less sensitivity to temperature change. When exploring the octane sensitivity effect, ignition was found to occur in temperature conditions more relevant to the MON test. Therefore, increasing octane sensitivity (reducing MON) led to higher reactivity and shorter ignition delay. Under both MCC (TIVC: 385K) and PPC (TIVC: 353K), all six physical properties showed little meaningful impact on global combustion behavior, NOx and fuel efficiency. Among the physical properties investigated, only density showed a notable effect on soot emissions. Increasing density resulted in higher soot due to deteriorated air entrainment into the spray and the slower fuel-air mixing process. When further reducing the IVC temperature from 353K to 303K under PPC, the spray vaporization and fuel-air mixing were markedly slowed. Consequently, increasing the liquid fuel density created a more pronounced presence of fuel-rich and higher reactivity regions, thereby leading to an earlier onset of hot ignition and higher soot.


2021 ◽  
pp. 1-25
Author(s):  
Meng Tang ◽  
Yuanjiang Pei ◽  
Hengjie Guo ◽  
Yu Zhang ◽  
Roberto Torelli ◽  
...  

Abstract A design optimization campaign was conducted to search for improved combustion profiles that enhance gasoline compression ignition in a heavy-duty diesel engine with a geometric compression ratio of 17.3. A large-scale design of experiments approach was used for the optimization, employing three-dimensional computational fluid dynamics simulations. The main parameters explored include geometric features, injector specifications, and swirl motion. Both stepped-lip and re-entrant bowls were included in order to assess their respective performance implications. A total of 256 design candidates were prepared using the software package CAESES for automated and simultaneous geometry generation and combustion recipe perturbation. The design optimization was conducted for three engine loads representing light to medium load conditions. The design candidates were evaluated for fuel efficiency, emissions, fuel-air mixing, and global combustion behavior. Simulation results showed that the optimum designs were all stepped-lip bowls, due to improvements in fuel-air mixing, as well as reduced heat loss and emissions formation. Improvements in indicated specific fuel consumption of up to 3.2% were achieved while meeting engine-out NOx emission targets of 1-1.5 g/kW·hr. Re-entrant bowls performed worse compared to the baseline design, and significant performance variations occurred across the load points. Specifically, the re-entrant bowls were on par with the stepped-lip bowls under light load conditions, but significant deteriorations occurred under higher load conditions. As a final task, selected optimized designs were then evaluated under full-load conditions.


Author(s):  
Le Zhao ◽  
Yuanjiang Pei ◽  
Yu Zhang ◽  
Praveen Kumar ◽  
Tom Tzanetakis ◽  
...  

Abstract Starting compression ignition engines under cold conditions is extremely challenging, due to insufficient fuel vaporization, heavy wall impingement, and low ignitability of the fuel. For gasoline compression ignition (GCI) combustion strategies, which offer the potential for an enhanced NOx-PM tradeoff with diesel-like fuel efficiency, robust ignition and combustion in very cold conditions pose a significant challenge due to the low reactivity of gasoline fuels. Based on the previous understanding of the spray, ignition and combustion processes for a GCI engine under cold conditions, this study focuses on investigating the cold combustion performance of a heavy-duty GCI engine with glow plug ignition assist. Glow plugs, commonly used for low temperature cold starts in diesel engines, are used to pre-heat a segment of the mixture to improve its ignitability. Here, CFD studies are carried out to explore the influence of a spray-guided glow plug on the spray and combustion behavior of a GCI engine under cold operating conditions. In a prior study, the underlying CFD model has been validated using experimental data from a six-cylinder, 15 L heavy-duty diesel engine operating with a compression ratio (CR) of 17.3 at a 600 rpm cold idle condition with RON92 E0 gasoline. The energy intensity required by the glow plug to deliver stable combustion isparametrically studied. The size and location of the glow plug are also parametrically varied to evaluate their effects on the combustion process. The influence of the glow plug on the in-cylinder mixture distribution and the ensuing combustion process is also investigated. In particular, the localized fuel spray distribution and mixture formation near the glow plug are examined. The results reveal that the glow plug enhances GCI combustion under cold idle conditions and that the spray-guided glow plug improves fuel vaporization, leading to a rich mixture near the glow plug and an enhancement of the combustion efficiency. In addition, the effectiveness of the glow plug at a low ambient temperature of 0°C and a 200 rpm cold start condition is evaluated. These simulations suggest that the glow plug can improve the cold start performance of a GCI engine.


Author(s):  
Yu Zhang ◽  
Alexander Voice ◽  
Tom Tzanetakis ◽  
Michael Traver ◽  
David Cleary

Future projections in global transportation fuel use show a demand shift toward diesel and away from gasoline. At the same time, greenhouse gas regulations will drive higher vehicle fuel efficiency and lower well-to-wheel CO2 production. Naphtha, a contributor to the gasoline stream and requiring less processing at the refinery level, is an attractive candidate to mitigate this demand shift while lowering the overall greenhouse gas impact. This study investigates the combustion and emissions performance of two naphtha fuels (Naphtha 1: RON59 and Naphtha 2: RON69) and one ultra-low sulfur diesel (ULSD) in a model year (MY) 2013, six-cylinder, heavy-duty diesel engine. Engine testing was focused on the heavy-duty supplemental emissions test (SET) “B” speed over a load sweep from 5 to 15 bar BMEP (brake-specific mean pressure). At each operating point, NOx sweeps were conducted over wide ranges. At 10–15 bar BMEP, mixing-controlled combustion dominates the engine combustion process. Under a compression ratio of 18.9, cylinder pressure and temperature at these load conditions are sufficiently high to suppress the reactivity difference between ULSD and the two naphtha fuels. As a result, the three test fuels showed similar ignition delay (ID). Nevertheless, naphtha fuels still exhibited notable soot reduction compared to ULSD. Under mixing-controlled combustion, this is likely due to their lower aromatic content and higher volatility. At 10 bar BMEP, Naphtha 1 generated less soot than Naphtha 2 since it contains less aromatics and is more volatile. When operated at light load, in a less reactive thermal environment, the lower reactivity naphtha fuels lead to longer IDs than ULSD. As a result, the soot benefit of naphtha fuels was enhanced. Utilizing the soot benefit of the naphtha fuels, engine-out NOx was calibrated from the production level of 3–4 g/hp-hr down to 2–2.5 g/hp-hr over the 12 nonidle SET steady-state modes. At this reduced NOx level, naphtha fuels were still able to maintain a soot advantage over ULSD and remain “soot-free” while achieving diesel-equivalent fuel efficiency. Finally, low-temperature combustion (LTC) operation (NOx ≤ 0.2 g/hp-hr and smoke ≤ 0.2 FSN) was achieved with both of the naphtha fuels at 5 bar BMEP through a late injection approach with high injection pressure. Under high exhaust gas recirculation (EGR) dilution, Naphtha 2 showed an appreciably longer ID than Naphtha 1, resulting in a soot reduction benefit.


Sign in / Sign up

Export Citation Format

Share Document