Heat transfer characteristics of straw-core paper honeycomb plates II: Heat transfer mechanism with hot-above and cold-below conditions

Author(s):  
Zhensheng Guo ◽  
Yuan Xu ◽  
Jinxiang Chen ◽  
Peixing Wei ◽  
Yiheng Song
Author(s):  
Hiroyasu Ohtake ◽  
Tomoyasu Tanaki ◽  
Yasuo Koizumi

Heat transfer characteristics in mist cooling with commercial machining oil were investigated experimentally. Steady state experiments of heat transfer were conducted using a pure copper cylinder and mist flow of commercial machining oil and air. Liquid flow rate was 0.3, 0.9, 1.8, 4 and 8 l/hr, respectively; each air flow rate was 0, 40, 75 and 120 lN/min. Furthermore, liquid mass flux on the heating surface for each experimental condition was measured by using a measuring cylinder with same diameter as the heater. Average velocity of droplets and average diameter of those were measured by using a laser doppler anemometer and immersion method, respectively. The heat transfer mechanism in oil mist was only cooling of liquid film formed on a heated surface, whereas the heat transfer mechanism in water mist cooling was classified into three regions. The heat transfer coefficient in the oil mist was well expressed by the heat removal capacity on sensible heat of supplying oil-droplets to the heated surface. Four dimensionless correlations were derived from a dimension analysis, Buckingham Pi theorem, and experimental data for both water mist and the oil mist.


Author(s):  
L. Anna Gowsalya ◽  
Mahboob E. Afshan

This chapter deals with the heat transfer characteristics between the cast and the mold. Generally the heat transfer behavior between the cast and the sand mold is used and all the three modes of heat transfer are studied. The heat transfer characteristics from the cast is at a faster rate for a die mold than for the sand mold. Since the sand mold is used for most of the industrial applications for the complex shapes of metal the heat transfer and the shrinkage behavior in solidification has to be understood perfectly. In this chapter, since the heat transfer mechanism and the shrinkage behavior of the metal in the sand mold is interrelated, hence were predominantly discussed.


Sign in / Sign up

Export Citation Format

Share Document