shrinkage behavior
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 75)

H-INDEX

25
(FIVE YEARS 5)

2022 ◽  
Vol 6 (1) ◽  
pp. 40
Author(s):  
Lei Wang ◽  
Xiao Lu ◽  
Lisheng Liu ◽  
Jie Xiao ◽  
Ge Zhang ◽  
...  

Currently, low heat Portland (LHP) cement is widely used in mass concrete structures. The magnesia expansion agent (MgO) can be adopted to reduce the shrinkage of conventional Portland cement-based materials, but very few studies can be found that investigate the influence of MgO on the properties of LHP cement-based materials. In this study, the influences of two types of MgO on the hydration, as well as the shrinkage behavior of LHP cement-based materials, were studied via pore structural and fractal analysis. The results indicate: (1) The addition of reactive MgO (with a reactivity of 50 s and shortened as M50 thereafter) not only extends the induction stage of LHP cement by about 1–2 h, but also slightly increases the hydration heat. In contrast, the addition of weak reactive MgO (with a reactivity of 300 s and shortened as M300 thereafter) could not prolong the induction stage of LHP cement. (2) The addition of 4 wt.%–8 wt.% MgO (by weight of binder) lowers the mechanical property of LHP concrete. Higher dosages of MgO and stronger reactivity lead to a larger reduction in mechanical properties at all of the hydration times studied. M300 favors the strength improvement of LHP concrete at later ages. (3) M50 effectively compensates the shrinkage of LHP concrete at a much earlier time than M300, whereas M300 compensates the long-term shrinkage more effectively than M50. Thus, M300 with an optimal dosage of 8 wt.% is suggested to be applied in mass LHP concrete structures. (4) The addition of M50 obviously refines the pore structures of LHP concrete at 7 days, whereas M300 starts to refine the pore structure at around 60 days. At 360 days, the concretes containing M300 exhibits much finer pore structures than those containing M50. (5) Fractal dimension is closely correlated with the pore structure of LHP concrete. Both pore structure and fractal dimension exhibit weak (or no) correlations with shrinkage of LHP concrete.


2022 ◽  
Vol 316 ◽  
pp. 126068
Author(s):  
Lili Xue ◽  
Zuhua Zhang ◽  
Hongfei Liu ◽  
Yuanhai Jiang ◽  
Hao Wang

2021 ◽  
Author(s):  
Wei Yu ◽  
Pluck Shin-Yueh Yang ◽  
Christopher Glancey ◽  
Yeow Chon Ong ◽  
Hong Wan Ng
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6962
Author(s):  
Bo Fu ◽  
Zhenyun Cheng ◽  
Jingyun Han ◽  
Ning Li

This research investigates the mechanism of metakaolin for mitigating the autogenous and drying shrinkages of alkali-activated slag with regard to the activator parameters, including concentration and modulus. The results indicate that the incorporation of metakaolin can decrease the initial viscosity and setting time. Increasing activator concentration can promote the reaction process and shorten the setting time. An increase in the metakaolin content induces a decrease in compressive strength due to reduced formation of reaction products. However, increasing activator dosage and modulus can improve the compressive strength of alkali-activated slag containing 30% metakaolin. The inclusion of metakaolin can mitigate the autogenous and drying shrinkage of alkali-activated slag by coarsening the pore structure. On the other hand, increases in activator concentration and modulus result in an increase in magnitude of the autogenous and drying shrinkage of alkali-activated slag containing metakaolin. The influence of the activator modulus on the shrinkage behavior of alkali-activated slag-metakaolin binary system should be further investigated.


Sign in / Sign up

Export Citation Format

Share Document