Casting Processes and Modelling of Metallic Materials
Latest Publications


TOTAL DOCUMENTS

7
(FIVE YEARS 7)

H-INDEX

0
(FIVE YEARS 0)

Published By Intechopen

9781839684319, 9781839684326

Author(s):  
Dominique Gagnon ◽  
Agnes M. Samuel ◽  
Fawzy H. Samuel ◽  
Mohamed H. Abdelaziz ◽  
Herbert W. Doty

The present study focuses on the porosity formation in three Al-Si cast alloys widely used in automotive industries viz. A319.0, A356.0, and A413.0 alloys under various conditions: stirring, degassing. Sr level, amount of grain refining, combined modification and grain refining, as well as hydrogen level. The solidification rate was the same for all alloys in terms of the mold used and its temperature. The microstructural investigations were carried out quantitatively using an optical microscope-image analyzer system scanning systematically over a polished sample area of 25 mm × 25 mm and qualitatively using an electron probe microanalzer equipped with EDS and WDS systems. The results were coupled with hardness measurements.


Author(s):  
Yuto Takagi ◽  
Masahiro Inagaki ◽  
Ken’ichi Yano

Full mold casting is a casting process in which a mold made of wood or metal is substituted for a styrofoam model. This metal casting process is advantageous for the production of large-sized castings because it uses a foamed model. However, this unique process of melting a foamed model causes a problem which is the foamed model remains dissolved in the casting. This is called foam residue defect and is specific to full mold casting. In this study, we propose a new casting design called a residue trap to reduce these residue defects. This residue trap collects the residue of foam models included in the molten metal, which tends to be generated when the temperature of the molten metal becomes low by being attached to the product part in the same way to overflows. We also optimized the shape of the residue trap in terms of easing of post-treatment and increasing efficiency of collecting foam residue. Eventually, the effectiveness of the residue trap was verified by actual full mold casting experiments.


Author(s):  
L. Anna Gowsalya ◽  
Mahboob E. Afshan

This chapter deals with the heat transfer characteristics between the cast and the mold. Generally the heat transfer behavior between the cast and the sand mold is used and all the three modes of heat transfer are studied. The heat transfer characteristics from the cast is at a faster rate for a die mold than for the sand mold. Since the sand mold is used for most of the industrial applications for the complex shapes of metal the heat transfer and the shrinkage behavior in solidification has to be understood perfectly. In this chapter, since the heat transfer mechanism and the shrinkage behavior of the metal in the sand mold is interrelated, hence were predominantly discussed.


Author(s):  
Nawaz Mahomed

In this Chapter, shrinkage porosity defects in steel castings are analysed, particularly for low carbon, high alloyed steels, which have applications in critical engineering components. It begins with the mechanisms for porosity formation within the solidification contraction phase of the casting cycle, highlighting the importance of feeder design. This is followed by characterisation of the solidification phase of steel alloys, including the evolution of phases, which is important in distinguishing between microstructure and porosity in microscopy analysis. A more detailed discussion of interdendritic feeding and mechanisms for shrinkage micro-porosity is then provided. This leads to the well-established interdendritic flow model and commonly-used thermal criteria for shrinkage porosity prediction. The discussions are then consolidated through the classification of shrinkage porosity in terms of formation mechanisms and morphology, and its causes relating to composition, design and process conditions. Finally, engineering standards for classification and inspection of porosity types and severity levels in steel castings are discussed. Throughout, basic design and process improvement approaches for improving melt feeding during solidification contraction is given, with emphasis on providing practical solutions for prediction and evaluation of shrinkage porosity defects in castings.


Author(s):  
María-Guadalupe González Solórzano ◽  
Rodolfo Morales-Dávila ◽  
Jafeth Rodríguez Ávila ◽  
Carlos Rodrigo Muñiz-Valdés ◽  
Alfonso Nájera Bastida

Nozzle clogging in continuous casting of steel originates by the adherence of alumina particles and other oxides, precipitated during the liquid steel deoxidation, on the refractory material’s surface. Hence, these particles’ nucleation and growth rates in supersaturated melts are analyzed considering, specifically, the role of the interfacial tensions between alumina, silica, and other oxides and the liquid metal. Weak steel deoxidizers like silicon do not need high supersaturations favoring high nucleation rates, giving particles’ narrow size distributions thanks to fast diffusion and Ostwald-ripening coagulation. Strong deoxidizers, like aluminum, need high supersaturation levels leading to broad size distributions. Besides, the morphology of these particles depends on the nucleation and growth mechanisms. The adhesion forces among the deoxidation particles, forming clusters, depending on the morphology and the oxide’s chemistry. The stability of the nozzle’s clog, adhered to the nozzle’s wall, depends on the interface tensions between the melt and the nozzle’s refractory surface and between the melt and the inclusion. The results obtained here help set up basic recommendations in steel refining and materials specifications of casting nozzles.


Author(s):  
Partha Haldar ◽  
Goutam Sutradhar

Production of sound casting demands a thorough understanding of whole casting process. But still, defects and rejection of castings are ubiquitous because in general, the designer lacks domain knowledge about casting processes and hardly have any methodology to find out the parameters that produce sound casting. Casting simulation software simulates the way how casting engineers decide the casting process in a virtual platform and also analyzes each decision to point out the design modifications needed to enhance the quality of casting as well as reduce lead time, tooling and manufacturing costs. The application of simulation software enables us to say, “Get it right, the first time and every time”. Simulation software can be very helpful in calculating tedious formulas, constructing solid modeling which will be helpful to visualise the actual situation like core/mould assembly, gating and feeding arrangements with the main casting before going into actual practice. It can be adopted for troubleshooting existing castings, and for producing new castings without or minimum shop-floor trials. This chapter illustrates the advantages of casting simulation (both tangible and intangible), bottlenecks (technical and resource-related), and some best practices to subdue the bottlenecks. In this chapter some of the live examples have been cited to understand the process logically and scientifically.


Author(s):  
John Campbell

Casting processes are reviewed from the point of view of the type of defects they produce and their consequential properties of the castings they produce, particularly resistance to fracture, and therefore, their reliability in service. The ingot casting of steels is criticized for unnecessary degradation of the steel. The fundamental problems of continuous casting of aluminum alloys and steels are seen to be lying in inattention to the details of the processes. Vacuum casting, particularly vacuum arc remelting, as currently executed, is seen to be fundamentally unreliable for any safety critical purposes, particularly its history of helicopter tragedies resulting from its use in helicopter drive trains.


Sign in / Sign up

Export Citation Format

Share Document