scholarly journals Heat transfer analysis of rectangular porous fins in local thermal non-equilibrium model

Author(s):  
Bernardo Buonomo ◽  
Furio Cascetta ◽  
Oronzio Manca ◽  
Mikhail Sheremet
Author(s):  
Yuanpeng Yao ◽  
Huiying Wu

Abstract This work focuses on macroscale modeling of solid-liquid phase change in metal foam/paraffin composite (MFPC), addressing the treatment of paraffin density (under distinct paraffin filling conditions in metal foam), thermal dispersion effect and influence of thermal diffusion dominated interstitial heat transfer. To this end, a macroscale thermal non-equilibrium model for melting in MFPC with fluid convection is developed by employing the enthalpy-porosity technique and volume averaging approach. Meanwhile, visualized experiments on melting of MFPC sample are carried out to validate the modeling results. Comparing the numerical modeling and experimental visualization results, it is found that for MFPC with an initially saturated filling condition in metal foam using solid paraffin, the varied paraffin density is preferred to be employed for developing accurate phase change model. However, for MFPC that can be just filled with liquid paraffin after melting (i.e., non-saturated filling condition using solid paraffin), Boussinesq approximation is preferred to achieve satisfying phase change simulation. Thermal dispersion effect in MFPC is proved to be negligible, which should not be overvalued to avoid inducing physical distortions of heat transfer and fluid flow. Consideration of diffusion dominated interstitial heat transfer in the thermal non-equilibrium model is vital to accurately capture phase interface evolutions as well as to reasonably simulate the mushy zone of paraffin; and the model only incorporating the convection induced interstitial heat transfer will predict quite inaccurate phase change process. This study can provide useful guidance in macroscale modeling of phase change in MFPC.


2001 ◽  
Vol 2001.50 (0) ◽  
pp. 299-300
Author(s):  
Masazumi SUGIYAMA ◽  
Fujio KUWAHARA ◽  
Akira NAKAYAMA

2019 ◽  
Vol 29 (6) ◽  
pp. 1902-1919 ◽  
Author(s):  
Marina S. Astanina ◽  
Mikhail Sheremet ◽  
C. Jawali Umavathi

Purpose The purpose of this study is a numerical analysis of transient natural convection in a square partially porous cavity with a heat-generating and heat-conducting element using the local thermal non-equilibrium model under the effect of cooling from the vertical walls. It should be noted that this research deals with a development of passive cooling system for the electronic devices. Design/methodology/approach The domain of interest is a square cavity with a porous layer and a heat-generating element. The vertical walls of the cavity are kept at constant cooling temperature, while the horizontal walls are adiabatic. The heat-generating solid element is located on the bottom wall. A porous layer is placed under the clear fluid layer. The governing equations, formulated in dimensionless stream function, vorticity and temperature variables with corresponding initial and boundary conditions, are solved using implicit finite difference schemes of the second order accuracy. The governing parameters are the Darcy number, viscosity variation parameter, porous layer height and dimensionless time. The effects of varying these parameters on the average total Nusselt number along the heat source surface, the average temperature of the heater, the fluid flow rate inside the cavity and on the streamlines and isotherms are analyzed. Findings The results show that in the case of local thermal non-equilibrium the total average Nusselt number is an increasing function of the interphase heat transfer coefficient and the porous layer thickness, while the average heat source temperature decreases with the Darcy number and viscosity variation parameter. Originality/value An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyze unsteady natural convection within a partially porous cavity using the local thermal non-equilibrium model in the presence of a local heat-generating solid element. The results would benefit scientists and engineers to become familiar with the analysis of convective heat transfer in enclosures with local heat-generating heaters and porous layers, and the way to predict the heat transfer rate in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors and electronics.


Sign in / Sign up

Export Citation Format

Share Document