Performance and operating modes of a thermal-lag Stirling engine with a flywheel

Author(s):  
Hang-Suin Yang ◽  
Chin-Hsiang Cheng ◽  
Muhammad Aon Ali
2018 ◽  
Vol 30 (1) ◽  
pp. 156-175 ◽  
Author(s):  
Mojtaba Alborzi ◽  
Faramarz Sarhaddi ◽  
Fatemeh Sobhnamayan

In this paper, neural network and genetic algorithm is used to obtain the optimal output power of thermal lag Stirling engine. A neural network is trained and developed using the theoretical data of previous literatures in order to predict the performance of Stirling engine. Input parameters to neural network include angular velocity, thermal resistance, stroke length radius, piston diameter, the volume of heat buffer chamber and the volume of gas chamber, and output parameter includes output power. The accuracy of neural network is evaluated by average square error and regression analysis. Also, genetic algorithm is used for the optimization of the output power of the Stirling engine. The results of present study show that the neural network can be used as an appreciate tool to predict the output power of the thermal lag Stirling engine with a high precision and speed. The main deficiency of thermal lag type of Stirling engines is low output power. However, the optimization of design parameters of thermal lag Stirling engine causes an increase of 86.9% in output power.


Author(s):  
Houda Hachem ◽  
Ramla Gheith ◽  
Sassi Ben Nasrallah ◽  
Fethi Aloui

The present paper investigates the heat characteristics of oscillatory piston-driven flow inside thermal-lag type Stirling engine. The geometry consists of a cylinder partially filled with a porous metal structure called regenerator, heated at the lateral wall on one side and cooled on the other side. Brinkman-Forchheimer-Lapwood extended Darcy model is assumed to simulate heat transfer within the regenerator. A numerical model is used to evaluate average entropy generation rate in the regenerator depending on its characteristics (form factor Lr /Dr, porosity and material) and on the oscillatory flow characteristics (working fluid, rotational engine speed, hot end temperature and initial pressure). The output power of the thermal lag Stirling engine is estimated for different working conditions. Results show that, the two main contributors to entropy generation in the regenerator are: entropy due to heat transfer (imperfection loss, internal conduction loss) and entropy due to viscous friction. Regenerator design leading to minimum entropy generation was investigated.


This article describes the proposed approaches to creating distributed models that can, with given accuracy under given restrictions, replace classical physical models for construction objects. The ability to implement the proposed approaches is a consequence of the cyber-physical integration of building systems. The principles of forming the data structure of designed objects and distributed models, which make it possible to uniquely identify the elements and increase the level of detail of such a model, are presented. The data structure diagram of distributed modeling includes, among other things, the level of formation and transmission of signals about physical processes inside cyber-physical building systems. An enlarged algorithm for creating the structure of the distributed model which describes the process of developing a data structure, formalizing requirements for the parameters of a design object and its operating modes (including normal operating conditions and extreme conditions, including natural disasters) and selecting objects for a complete group that provides distributed modeling is presented. The article formulates the main approaches to the implementation of an important practical application of the cyber-physical integration of building systems - the possibility of forming distributed physical models of designed construction objects and the directions of further research are outlined.


Sign in / Sign up

Export Citation Format

Share Document