Indoor environmental quality classification of school environments by monitoring PM and CO2 concentration levels

2020 ◽  
Vol 11 (2) ◽  
pp. 332-342 ◽  
Author(s):  
Luigi Schibuola ◽  
Chiara Tambani
2019 ◽  
Vol 11 (23) ◽  
pp. 6591 ◽  
Author(s):  
Lexuan Zhong ◽  
Jing Yuan ◽  
Brian Fleck

In this paper, ventilation, indoor air quality (IAQ), thermal and acoustic conditions, and lighting were studied to evaluate the indoor environmental quality (IEQ) in an institutional building at the University of Alberta in Edmonton, Canada. This study examined IEQ parameters, including pressure, illuminance, acoustics, carbon dioxide (CO2) concentration, temperature, and humidity, with appropriate monitors allocated during a lecture (duration 50 min or 80 min) in four lecture classrooms repeatedly (N = 99) from October 2018 to March 2019 with the objectives of providing a comprehensive analysis of interactions between IEQ parameters. The classroom environments were maintained at 23 ± 1 °C and 33% ± 3% RH during two-season measurements. Indoor mean CO2 concentrations were 550–1055 ppm, and a mean sound level of 58 ± 3 dBA was observed. The air change rates were configured at 1.3–6.5 per hour based on continuous CO2 measurements and occupant loads in the lectures. A variance analysis indicated that the within-lecture classroom variations in most IEQ parameters exceeded between-lecture classrooms. A multilayer artificial neural network (ANN) model was developed on the basis of feedforward networks with a backpropagation algorithm. ANN results demonstrated the importance of the sequence of covariates on indoor conditions (temperature, RH, and CO2 level): Air change rate (ACR) > room operations (occupant number and light system) > outdoor conditions.


Author(s):  
Richard Nagy ◽  
Ľudmila Mečiarová ◽  
Silvia Vilčeková ◽  
Eva Krídlová Burdová ◽  
Danica Košičanová

This paper emphasizes the importance of environmental protection regarding the reduction of energy consumption while maintaining living standards. The aim of the research is to observe the effects of mechanical and natural ventilation on energy consumption and building operation as well as indoor environmental quality (IEQ). The results of indoor environmental quality testing show that the mean relative humidity (31%) is in the permissible range (30%–70%); the mean CO2 concentration (1050.5 ppm) is above the recommended value of 1000 ppm according to Pettenkofer; and the mean PM10 concentration (43.5 µg/m3) is under the limit value of 50 µg/m3. A very large positive correlation is found between relative humidity and concentration of CO2 as well as between the concentration of PM5 and the concentration of CO2. The most commonly occurring sick building syndrome (SBS) symptoms are found to be fatigue and the feeling of a heavy head.


2016 ◽  
Vol 20 (suppl. 5) ◽  
pp. 1521-1529
Author(s):  
Tamara Bajc ◽  
Maja Todorovic ◽  
Agis Papadopoulos

This paper presents the part of the research that has been done at the Universities both in Belgrade and Thessaloniki, Greece, taking into account indoor environmental quality in office buildings and classrooms. The measurements that are presented were done in Process Equipment Design Laboratory at Aristotle University Thessaloniki, during March 2015. Indoor environmental quality regarding air temperature, relative humidity, and CO2 concentration in two representative offices is observed. The similar offices are located one on the north-east and the other one on the south-west side of the University building, so as to be representative of the orientation?s impact. Furthermore, the impact of natural ventilation on CO2 concentration and temperature is monitored, together with the offices? occupancy. Recommended parameters for indoor air quality are compared and discussed on the base of several standards: SRPS EN 15251:2010, ASHRAE standards 55 and 62.1, and ISO 7730. The main objectives, as set from these standards are discussed, together with the investigation results.


1999 ◽  
Author(s):  
S. Reynolds ◽  
P. Subramanian ◽  
G. Breuer ◽  
M. Stein ◽  
D. Black ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document