Design of air quality monitoring network of Luanda, Angola: Urban air pollution assessment

2021 ◽  
pp. 101128
Author(s):  
Pascoal M.D. Campos ◽  
Ana F. Esteves ◽  
Anabela A. Leitão ◽  
José C.M. Pires
2021 ◽  
pp. 94-106
Author(s):  
Porush Kumar ◽  
Kuldeep ◽  
Nilima Gautam

Air pollution is a severe issue of concern worldwide due to its most significant environmental risk to human health today. All substances that appear in excessive amounts in the environment, such as PM10, NO2, or SO2, may be associated with severe health problems. Anthropogenic sources of these pollutants are mainly responsible for the deterioration of urban air quality. These sources include stationary point sources, mobile sources, waste disposal landfills, open burning, and similar others. Due to these pollutants, people are at increased risk of various serious diseases like breathing problems and heart disease, and the death rate due to these diseases can also increase. Hence, air quality monitoring is essential in urban areas to control and regulate the emission of these pollutants to reduce the health impacts on human beings. Udaipur has been selected for the assessment of air quality with monitored air quality data. Air quality monitoring stations in Udaipur city are operated by the CPCB (Central Pollution Control Board) and RSPCB (Rajasthan State Pollution Control Board). The purpose of this study is to characterize the level of urban air pollution through the measurement of PM10, NO2, or SO2 in Udaipur city, Rajasthan (India). Four sampling locations were selected for Udaipur city to assess the effect of urban air pollution and ambient air quality, and it was monitored for a year from 1st January 2019 to 31st December 2019. The air quality index has been calculated with measured values of PM10, NO2, and SO2. The concentration of PM10 is at a critical level of pollution and primarily responsible for bad air quality and high air quality Index in Udaipur city.


2020 ◽  
Author(s):  
Tilman Leo Hohenberger

<p>Urban air pollution remains a key pressure on public health. With the megatrend of urbanization and its forcing on emissions and exposure, effective monitoring tools in cities are at the center of prevention efforts.</p><p>Air Quality Monitoring Stations (AQMS) are traditionally used for regulatory efforts and, increasingly, as publicly available information sources. Facing high levels of air pollution heterogeneity in complex urban environments, a simple spatial approach is often misleading when choosing an AQMS that represents local street-level conditions the best. Model-based calculation of representativeness areas are rare for the urban scale (e.g. Rodriguez et al., 2019), and suffer from short model times, low model correlations and a lack of external validation by observation data. Moreover, as both health impacts and air-pollution episodes are influenced by environmental factors, the sensitivity of representativeness areas to wind impacts and during different seasons are a further point of interest not covered well by previous literature.</p><p>For the high-density environment of geographically complex Hong Kong, we used a full year (2019) of high-resolution air quality modelling (ADMS-Urban) data to establish representativeness areas for the territory’s 16 AQMS. We constructed representativeness areas for key air-pollutants for the full period and based on season and wind speed. We parameterized the effects of wind and geography on the size and shape of the representativeness areas. Furthermore, we validated our findings by a series of week-long outdoor measurements aimed to cover the whole territory of Hong Kong.</p><p>Our results show that Hong Kong’s AQMS network covering the territory well for a PM<sub>2.5</sub>, PM<sub>10</sub> and O<sub>3</sub>, where the mean CSF (hourly Concentration Similarity Frequency with a target of ±20%) of each grid-cell to the best matching AQMS lies at around 60%. Both NO<sub>2</sub> and SO<sub>2</sub> are less well represented, with a CSF of around 30%. Moreover, we show that representativeness areas calculated from similarity-based metrices as CSF and percentage difference represent the impact of geographical features on pollution dispersion better than correlation-based metrices (R<sup>2</sup> and ioa). It was further found that AQMS represent upwind areas better than downwind areas, especially in areas exposed to open wind-flow, and that the represented areas change strongly over the course of a year.</p><p>In this study, we showcase the ability of high-resolution urban air-pollution modelling to guide the public with information on AQMS representativeness. Furthermore, we report that representativeness areas are non-static, changing with seasons and under the influence of wind. High-resolution urban modelling can further be used to gauge the quality of AQMS networks and assess the need and location of additions to an existing network.</p><p> </p><p>Rodriguez, D., Valari, M., Payan, S., & Eymard, L. (2019). On the spatial representativeness of NOX and PM10 monitoring-sites in Paris, France. Atmospheric Environment: X, 1, 100010.</p>


2021 ◽  
Author(s):  
Sonu Kumar Jha ◽  
Mohit Kumar ◽  
Vipul Arora ◽  
Sachchida Nand Tripathi ◽  
Vidyanand Motiram Motghare ◽  
...  

<div>Air pollution is a severe problem growing over time. A dense air-quality monitoring network is needed to update the people regarding the air pollution status in cities. A low-cost sensor device (LCSD) based dense air-quality monitoring network is more viable than continuous ambient air quality monitoring stations (CAAQMS). An in-field calibration approach is needed to improve agreements of the LCSDs to CAAQMS. The present work aims to propose a calibration method for PM2.5 using domain adaptation technique to reduce the collocation duration of LCSDs and CAAQMS. A novel calibration approach is proposed in this work for the measured PM2.5 levels of LCSDs. The dataset used for the experimentation consists of PM2.5 values and other parameters (PM10, temperature, and humidity) at hourly duration over a period of three months data. We propose new features, by combining PM2.5, PM10, temperature, and humidity, that significantly improved the performance of calibration. Further, the calibration model is adapted to the target location for a new LCSD with a collocation time of two days. The proposed model shows high correlation coefficient values (R2) and significantly low mean absolute percentage error (MAPE) than that of other baseline models. Thus, the proposed model helps in reducing the collocation time while maintaining high calibration performance.</div>


2016 ◽  
Author(s):  
Jianlin Hu ◽  
Jianjun Chen ◽  
Qi Ying ◽  
Hongliang Zhang

Abstract. China has been experiencing severe air pollution in recent decades. Although ambient air quality monitoring network for criteria pollutants has been constructed in over 100 cities since 2013 in China, the temporal and spatial characteristics of some important pollutants, such as particulate matter (PM) components, remain unknown, limiting further studies investigating potential air pollution control strategies to improve air quality and associating human health outcomes with air pollution exposure. In this study, a yearlong (2013) air quality simulation using the Weather Research &amp; Forecasting model (WRF) and the Community Multi-scale Air Quality model (CMAQ) was conducted to provide detailed temporal and spatial information of ozone (O3), PM2.5 total and chemical components. Multi-resolution Emission Inventory for China (MEIC) was used for anthropogenic emissions and observation data obtained from the national air quality monitoring network were collected to validate model performance. The model successfully reproduces the O3 and PM2.5 concentrations at most cities for most months, with model performance statistics meeting the performance criteria. However, over-prediction of O3 generally occurs at low concentration range while under-prediction of PM2.5 happens at low concentration range in summer. Spatially, the model has better performance in Southern China than in Northern, Central and Sichuan basin. Strong seasonal variations of PM2.5 exist and wind speed and direction play important roles in high PM2.5 events. Secondary components have more boarder distribution than primary components. Sulfate (SO42−), nitrate (NO3−), ammonium (NH4+), and primary organic aerosol (POA) are the most important PM2.5 components. All components have the highest concentrations in winter except secondary organic aerosol (SOA). This study proves the ability of CMAQ model in reproducing severe air pollution in China, identifies the directions where improvements are needed, and provides information for human exposure to multiple pollutants for assessing health effects.


2020 ◽  
Author(s):  
Woo-Sik Jung ◽  
Woo-Gon Do

&lt;p&gt;&lt;strong&gt;With increasing interest in air pollution, the installation of air quality monitoring networks for regular measurement is considered a very important task in many countries. However, operation of air quality monitoring networks requires much time and money. Therefore, the representativeness of the locations of air quality monitoring networks is an important issue that has been studied by many groups worldwide. Most such studies are based on statistical analysis or the use of geographic information systems (GIS) in existing air quality monitoring network data. These methods are useful for identifying the representativeness of existing measuring networks, but they cannot verify the need to add new monitoring stations. With the development of computer technology, numerical air quality models such as CMAQ have become increasingly important in analyzing and diagnosing air pollution. In this study, PM2.5 distributions in Busan were reproduced with 1-km grid spacing by the CMAQ model. The model results reflected actual PM2.5 changes relatively well. A cluster analysis, which is a statistical method that groups similar objects together, was then applied to the hourly PM2.5 concentration for all grids in the model domain. Similarities and differences between objects can be measured in several ways. K-means clustering uses a non-hierarchical cluster analysis method featuring an advantageously low calculation time for the fast processing of large amounts of data. K-means clustering was highly prevalent in existing studies that grouped air quality data according to the same characteristics. As a result of the cluster analysis, PM2.5 pollution in Busan was successfully divided into groups with the same concentration change characteristics. Finally, the redundancy of the monitoring stations and the need for additional sites were analyzed by comparing the clusters of PM2.5 with the locations of the air quality monitoring networks currently in operation.&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2017R1D1A3B03036152).&lt;/strong&gt;&lt;/p&gt;


2016 ◽  
Vol 16 (16) ◽  
pp. 10333-10350 ◽  
Author(s):  
Jianlin Hu ◽  
Jianjun Chen ◽  
Qi Ying ◽  
Hongliang Zhang

Abstract. China has been experiencing severe air pollution in recent decades. Although an ambient air quality monitoring network for criteria pollutants has been constructed in over 100 cities since 2013 in China, the temporal and spatial characteristics of some important pollutants, such as particulate matter (PM) components, remain unknown, limiting further studies investigating potential air pollution control strategies to improve air quality and associating human health outcomes with air pollution exposure. In this study, a yearlong (2013) air quality simulation using the Weather Research and Forecasting (WRF) model and the Community Multi-scale Air Quality (CMAQ) model was conducted to provide detailed temporal and spatial information of ozone (O3), total PM2.5, and chemical components. Multi-resolution Emission Inventory for China (MEIC) was used for anthropogenic emissions and observation data obtained from the national air quality monitoring network were collected to validate model performance. The model successfully reproduces the O3 and PM2.5 concentrations at most cities for most months, with model performance statistics meeting the performance criteria. However, overprediction of O3 generally occurs at low concentration range while underprediction of PM2.5 happens at low concentration range in summer. Spatially, the model has better performance in southern China than in northern China, central China, and Sichuan Basin. Strong seasonal variations of PM2.5 exist and wind speed and direction play important roles in high PM2.5 events. Secondary components have more boarder distribution than primary components. Sulfate (SO42−), nitrate (NO3−), ammonium (NH4+), and primary organic aerosol (POA) are the most important PM2.5 components. All components have the highest concentrations in winter except secondary organic aerosol (SOA). This study proves the ability of the CMAQ model to reproduce severe air pollution in China, identifies the directions where improvements are needed, and provides information for human exposure to multiple pollutants for assessing health effects.


Sign in / Sign up

Export Citation Format

Share Document