Fluorescent organic particle doped polymer-based gel dosimeter for neutron detection

2021 ◽  
pp. 110067
Author(s):  
Karla A. Bastidas-Bonilla ◽  
Pedro L.M. Podesta-Lerma ◽  
Hector R. Vega-Carrillo ◽  
Ramón Castañeda-Priego ◽  
Erick Sarmiento-Gómez ◽  
...  
2013 ◽  
Vol 27 (11) ◽  
pp. 1121-1128 ◽  
Author(s):  
Yan-Ping CHEN ◽  
De-Li LUO
Keyword(s):  

2001 ◽  
Vol 66 (8) ◽  
pp. 1208-1218 ◽  
Author(s):  
Guofeng Li ◽  
Mira Josowicz ◽  
Jiří Janata

Structural and electronic transitions in poly(thiophenyleneiminophenylene), usually referred to as poly(phenylenesulfidephenyleneamine) (PPSA) upon electrochemical doping with LiClO4 have been investigated. The unusual electrochemical behavior of PPSA indicates that the dopant anions are bound in two energetically different sites. In the so-called "binding site", the ClO4- anion is Coulombically attracted to the positively charged S or N sites on one chain and simultaneously hydrogen-bonded with the N-H group on a neighboring polymer chain. This strong interaction causes a re-organization of the polymer chains, resulting in the formation of a networked structure linked together by these ClO4- Coulombic/hydrogen bonding "bridges". However, in the "non-binding site", the ClO4- anion is very weakly bound, involves only the electrostatic interaction and can be reversibly exchanged when the doped polymer is reduced. In the repeated cycling, the continuous and alternating influx and expulsion of ClO4- ions serves as a self-organizing process for such networked structures, giving rise to a diminishing number of available "non-binding" sites. The occurrence of these ordered structures has a major impact on the electrochemical activity and the morphology of the doped polymer. Also due to stabilization of the dopant ions, the doped polymer can be kept in a stable and desirable oxidation state, thus both work function and conductivity of the polymer can be electrochemically controlled.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
K. Kvale ◽  
A. E. F. Prowe ◽  
C.-T. Chien ◽  
A. Landolfi ◽  
A. Oschlies

AbstractGlobal warming has driven a loss of dissolved oxygen in the ocean in recent decades. We demonstrate the potential for an additional anthropogenic driver of deoxygenation, in which zooplankton consumption of microplastic reduces the grazing on primary producers. In regions where primary production is not limited by macronutrient availability, the reduction of grazing pressure on primary producers causes export production to increase. Consequently, organic particle remineralisation in these regions increases. Employing a comprehensive Earth system model of intermediate complexity, we estimate this additional remineralisation could decrease water column oxygen inventory by as much as 10% in the North Pacific and accelerate global oxygen inventory loss by an extra 0.2–0.5% relative to 1960 values by the year 2020. Although significant uncertainty accompanies these estimates, the potential for physical pollution to have a globally significant biogeochemical signal that exacerbates the consequences of climate warming is a novel feedback not yet considered in climate research.


1997 ◽  
Author(s):  
W. H. Trzaska ◽  
V. A. Rubchenya ◽  
A. A. Alexandrov ◽  
I. D. Alkhazov ◽  
J. Äystö ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document