The impact of garlic mustard on sandy forest soils

2012 ◽  
Vol 60 ◽  
pp. 23-28 ◽  
Author(s):  
Sherri J. Morris ◽  
Dustin L. Herrmann ◽  
Jessica McClain ◽  
Jaclyn Anderson ◽  
Kelly D. McConnaughay
2016 ◽  
Vol 13 (16) ◽  
pp. 4777-4788 ◽  
Author(s):  
Qian Zhao ◽  
Simon R. Poulson ◽  
Daniel Obrist ◽  
Samira Sumaila ◽  
James J. Dynes ◽  
...  

Abstract. Iron oxide minerals play an important role in stabilizing organic carbon (OC) and regulating the biogeochemical cycles of OC on the earth surface. To predict the fate of OC, it is essential to understand the amount, spatial variability, and characteristics of Fe-bound OC in natural soils. In this study, we investigated the concentrations and characteristics of Fe-bound OC in soils collected from 14 forests in the United States and determined the impact of ecogeographical variables and soil physicochemical properties on the association of OC and Fe minerals. On average, Fe-bound OC contributed 37.8 % of total OC (TOC) in forest soils. Atomic ratios of OC : Fe ranged from 0.56 to 17.7, with values of 1–10 for most samples, and the ratios indicate the importance of both sorptive and incorporative interactions. The fraction of Fe-bound OC in TOC (fFe-OC) was not related to the concentration of reactive Fe, which suggests that the importance of association with Fe in OC accumulation was not governed by the concentration of reactive Fe. Concentrations of Fe-bound OC and fFe-OC increased with latitude and reached peak values at a site with a mean annual temperature of 6.6 °C. Attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR) and near-edge X-ray absorption fine structure (NEXAFS) analyses revealed that Fe-bound OC was less aliphatic than non-Fe-bound OC. Fe-bound OC also was more enriched in 13C compared to the non-Fe-bound OC, but C ∕ N ratios did not differ substantially. In summary, 13C-enriched OC with less aliphatic carbon and more carboxylic carbon was associated with Fe minerals in the soils, with values of fFe-OC being controlled by both sorptive and incorporative associations between Fe and OC. Overall, this study demonstrates that Fe oxides play an important role in regulating the biogeochemical cycles of C in forest soils and uncovers the governing factors for the spatial variability and characteristics of Fe-bound OC.


2016 ◽  
Author(s):  
Qian Zhao ◽  
Simon R. Poulson ◽  
Daniel Obrist ◽  
Samira Sumaila ◽  
James J. Dynes ◽  
...  

Abstract. Iron oxide minerals play an important role in stabilizing organic carbon (OC) and regulating the biogeochemical cycles of OC on the earth surface. To predict the fate of OC, it is essential to completely understand the amount, spatial variability and characteristics of Fe-bound OC in natural soils. In this study, we investigated the concentrations and characteristics of Fe-bound OC in soils collected from 14 forests in the United States, and determined the impact of ecogeographical variables and soil physicochemical properties o n the association of OC and Fe minerals. We found that Fe-bound OC contributed up to 57.8 % of total OC (TOC) in forest soils. Atomic ratios of OC:Fe ranged from 0.56 to 17.7 with values of 1–10 for most samples, and these ratios indicate an importance of both sorptive and incorporativ e interactions. The fraction of Fe-bound OC in TOC (fFe-OC) was not related to the concentration of reactive Fe, which suggests that the importance of association with Fe in OC accumulation was not governed by the concentration of reactive Fe. Concentrations of Fe-bound OC and fFe-OC increased with the latitude and reached peak values at a site with a mean annual temperature of 6.6 °C Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and near-edge X-ray absorption fine structure (NEXAFS) analyses revealed that Fe-bound OC was less aliphatic than non-Fe-bound OC. Fe-bound OC also was more enriched in 13C compared to the non-Fe-bound OC, but C/N ratios did not differ substantially. In summary, 13C-enriched OC with less aliphatic carbon and more carboxylic carbon was associated with Fe minerals in the soils, with values of fFe-OC being controlled by both sorptive and incorporative associations between Fe and OC. Overall, this study demonstrates that Fe oxides play an important role in regulating the biogeochemical cycles of C in forest soils, and uncovers the governing factors for the spa tial variability and characteristics of Fe-bound OC.


2016 ◽  
Vol 11 (3) ◽  
pp. 36-40
Author(s):  
Сабиров ◽  
Ayrat Sabirov

The impact of productive activity of human on the ecological balance of nature. Ecological functions of soils of forest biogeocenoses. Regional features of the ecosystems functioning, soil formation factors. Organization of the soil cover state monitoring. Environmental monitoring of forest soils. Objectives of soil monitoring of forest ecosystems. Collection of the available information on forest ecosystems. Choice of monitoring objects. Soil and environmental hospitals. Fixed trial areas. Long-term and seasonal observations of soil properties. Temporary trial areas. Soil monitoring on the route courses. The use of satellite imagery in the environmental assessment of erosive landscapes. Controlled soil indicators. Research methods of soil properties and composition of pollutants. Processing of experimental data using information technology. Mathematical models of the spread of pollutants, the interrelation between soil indicators (in the soil), between soil properties and indicators of the characteristic of forest, the evolution of forest soil. Small-scale and medium-scale regional maps of land erosion, soil contamination by chemicals. Large-scale maps of physical degradation of soils, the content of macronutrients and micronutrients, acidity, humus condition of soils. Maps are accompanied by an explanatory note (soil sketch). Maximum permissible amount of the chemicals (maximum allowable concentrations) polluting the soil. Maximum permissible loading on forest soils under anthropogenic impact. Rational use and protection of forest ecosystems.


10.12737/3822 ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. 112-116
Author(s):  
Жубрин ◽  
Denis Zhubrin ◽  
Сабиров ◽  
Ayrat Sabirov

Conducting soil studies are relevant in determining the subordination of forest types and biodiversity of vegetation to soil taxa, in determining the dependence of basic forest stand productivity from soil conditions, in creating a land registry and economic assessment of forest land, in studying the soil evolution of forest plantations under the impact of anthropogenic influences. Soil is the most important environmental factor in shaping the productivity and biodiversity of forest phytocenosis. The study of forest soils is also important in terms of basic research of their genesis, evolution. The article presents the results of research of soil conditions of vegetation growth of forest ecosystems of northern regions of Volga of the Republic of Tatarstan. The main types of forest soils are characterized in the paper. The studied forest formations grow on various soils on genesis and forest vegetation properties: sod-podzol, gray forest, brown forest, brown forest sandy, alluvial meadow, rendziny soil. The granulometric structure of soils varies from sandy to the clay. The well structured soils are formed on loamy layers under forest phytocenosis canopy. Pine and spruce ecosystems have a medi-decomposed litter of moder and multi-moder types; linden, oak, birch and aspen biogeocoenoses have strong-decomposed litter of multi type, that characterizes the intense biological cycle of substances in forest ecosystems. The wide range of place conditions of territories causes the biological diversity of forest vegetation at the level of species and ecosystems.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Lucien N'Guessan Diby ◽  
Bi Tra Tie ◽  
Olivier Girardin ◽  
Ravi Sangakkara ◽  
Emmanuel Frossard

Fertilization is an important management strategy of yams (Dioscoreaspp.) especially when grown in degraded soils. A field study evaluated the leaf numbers, leaf area indices, crop growth, yields, and nitrogen (N) and potassium (K) use efficiencies ofD. alataandD. rotundatain Côte d'Ivoire when grown in two contrasting soils with and without fertilizer.D. alatahad a lower number of leaves per vine, although leaf area indices were higher, and the leaves were retained for a longer period than inD. rotundata. In all situations, the yields ofD. alatawere significantly higher, and fertilizers promoted growth of shoots, roots, tubers, and, thus, final yields especially in the low fertile savanna soil. The beneficial impact of fertilizer on yields was significantly lower in the fertile forest soils. The nutrient use agronomic efficiencies indicated the impact of both N and K in promoting yields especially under nonfertilized conditions.


2015 ◽  
Vol 16 (2) ◽  
pp. 461-466 ◽  
Author(s):  
Xiaodong Zhang ◽  
Zhaoliang Song ◽  
Kim McGrouther ◽  
Jianwu Li ◽  
Zimin Li ◽  
...  

2015 ◽  
Vol 338 ◽  
pp. 124-138 ◽  
Author(s):  
Martina Cambi ◽  
Giacomo Certini ◽  
Francesco Neri ◽  
Enrico Marchi

Sign in / Sign up

Export Citation Format

Share Document