Response of soil microbial functionality and soil properties to environmental plantings across a chronosequence in south eastern Australia

2021 ◽  
Vol 168 ◽  
pp. 104100
Author(s):  
A. Amarasinghe ◽  
O.G.G. Knox ◽  
C. Fyfe ◽  
L.A. Lobry de Bruyn ◽  
B.R. Wilson
Soil Research ◽  
2019 ◽  
Vol 57 (5) ◽  
pp. 467 ◽  
Author(s):  
Jonathan M. Gray ◽  
Thomas F. A. Bishop

Climate change will lead to altered soil conditions that will impact on plant growth in both agricultural and native ecosystems. Additionally, changes in soil carbon storage will influence carbon accounting schemes that may play a role in climate change mitigation programs. We applied a digital soil mapping approach to examine and map (at 100-m resolution) potential changes in three important soil properties – soil organic carbon (SOC), pH and sum-of-bases (common macro-nutrients) – resulting from projected climate change over south-eastern Australia until ~2070. Four global climate models were downscaled with three regional models to give 12 climate models, which were used to derive changes for the three properties across the province, at 0–30 and 30–100 cm depth intervals. The SOC stocks were projected to decline over the province, while pH and sum-of-bases were projected to increase; however, the extent of change varied throughout the province and with different climate models. The average changes primarily reflected the complex interplay of changing temperatures and rainfall throughout the province. The changes were also influenced by the operating environmental conditions, with a uniform pattern of change particularly demonstrated for SOC over 36 combinations of current climate, parent material and land use. For example, the mean decline of SOC predicted for the upper depth interval was 15.6 Mg ha–1 for wet–mafic–native vegetation regimes but only 3.1 Mg ha–1 for dry–highly siliceous–cropping regimes. The predicted changes reflected only those attributable to the projected climate change and did not consider the influence of ongoing and changing land management practices.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
David Nash ◽  
Craig Butler ◽  
Justine Cody ◽  
Michael St. J. Warne ◽  
Mike J. McLaughlin ◽  
...  

Biosolids were applied to a pasture and a vineyard in south-eastern Australia. At both sites, soil Cd, Cu, and Zn concentrations linearly increased with biosolids application rates although not to the extent of exceeding soil quality guidelines. Biosolids marginally increased soil C and N concentrations at the pasture site but significantly increased P concentrations. With lower overall soil fertility at the vineyard, biosolids increased C, N, and P concentrations. At neither site did biosolids application affect soil microbial endpoints. Biosolids increased pasture production compared to the unfertilised control but had little effect on grape production or quality. Interestingly, over the 3-year trial, there was no difference in pasture production between the biosolids treated plots and plots receiving inorganic fertiliser. These results suggest that biosolids could be used as a fertiliser to stimulate pasture production and as a soil conditioner to improve vineyard soils in this region.


Soil Research ◽  
2019 ◽  
Vol 57 (7) ◽  
pp. 805
Author(s):  
Jonathan M. Gray ◽  
Thomas F. A. Bishop

Climate change will lead to altered soil conditions that will impact on plant growth in both agricultural and native ecosystems. Additionally, changes in soil carbon storage will influence carbon accounting schemes that may play a role in climate change mitigation programs. We applied a digital soil mapping approach to examine and map (at 100-m resolution) potential changes in three important soil properties – soil organic carbon (SOC), pH and sum-of-bases (common macro-nutrients) – resulting from projected climate change over south-eastern Australia until ~2070. Four global climate models were downscaled with three regional models to give 12 climate models, which were used to derive changes for the three properties across the province, at 0–30 and 30–100 cm depth intervals. The SOC stocks were projected to decline over the province, while pH and sum-of-bases were projected to increase; however, the extent of change varied throughout the province and with different climate models. The average changes primarily reflected the complex interplay of changing temperatures and rainfall throughout the province. The changes were also influenced by the operating environmental conditions, with a uniform pattern of change particularly demonstrated for SOC over 36 combinations of current climate, parent material and land use. For example, the mean decline of SOC predicted for the upper depth interval was 15.6 Mg ha–1 for wet–mafic–native vegetation regimes but only 3.1 Mg ha–1 for dry–highly siliceous–cropping regimes. The predicted changes reflected only those attributable to the projected climate change and did not consider the influence of ongoing and changing land management practices.


Sign in / Sign up

Export Citation Format

Share Document