Facile synthesis of Bi 2 MoO 6 /ZnSnO 3 heterojunction with enhanced visible light photocatalytic degradation of methylene blue

2018 ◽  
Vol 430 ◽  
pp. 561-570 ◽  
Author(s):  
Yue Liu ◽  
Zhao-Hui Yang ◽  
Pei-Pei Song ◽  
Rui Xu ◽  
Hui Wang
RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 6383-6394 ◽  
Author(s):  
Haishuai Li ◽  
Linlin Cai ◽  
Xin Wang ◽  
Huixian Shi

A noval ternary nanocomposite AgCl/Ag3PO4/g-C3N4 was successfully synthesized for photocatalytic degradation of methylene blue, methylparaben and inactivation of E. coli under visible light irradiation, showing excellent photocatalytic degradation performance and stability.


RSC Advances ◽  
2017 ◽  
Vol 7 (41) ◽  
pp. 25314-25324 ◽  
Author(s):  
Lin Xiao ◽  
Li Youji ◽  
Chen Feitai ◽  
Xu Peng ◽  
Li Ming

A highly efficient and elaborately structured visible-light-driven catalyst composed of mesoporous TiO2 (MT) doped with Ag+-coated graphene (MT-Ag/GR) has been successfully fabricated by a sol–gel and solvothermal method.


2012 ◽  
Vol 441 ◽  
pp. 544-548 ◽  
Author(s):  
Jun Min Wan ◽  
Zhang Zhu Wu ◽  
Hui Gang Wang ◽  
Xu Ming Zheng

The photocatalytic degradation of methylene blue (MB) under visible light irradiation is investigated by using the TiO2photocatalyst sensitized with meso-tetra (4-carboxyphenyl) porphyrin (H2TCPP) and/or meso-tetra (4-carboxyphenyl) copper porphyrin (CuTCPP). The XRD and XPS experimental results indicate that porphyrins are chemisorbed on the surface of TiO2through the O=C-O-Ti chemical bond. The degradation of methylene blue (MB) by H2TCPP and/or CuTCPP sensitized TiO2and under incandescent lamp irradiation is likely through injecting electrons from the photoexcited sensitizer to the conduction band of TiO2. The porphyrin-and/or metallic porphyrin-sensitized TiO2exhibits higher absorbability in the visible-light region than pure TiO2. All facts show that the porphyrin-, and/or metallic porphyrin-sensitized TiO2have potentially a significant application in wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document