Electronic and optical properties of van der Waals heterostructures of g-GaN and transition metal dichalcogenides

2019 ◽  
Vol 492 ◽  
pp. 513-519 ◽  
Author(s):  
Zhen Cui ◽  
Kai Ren ◽  
Yiming Zhao ◽  
Xia Wang ◽  
Huabing Shu ◽  
...  
2021 ◽  
Vol 23 (10) ◽  
pp. 6298-6308
Author(s):  
Chan Gao ◽  
Xiaoyong Yang ◽  
Ming Jiang ◽  
Lixin Chen ◽  
Zhiwen Chen ◽  
...  

The combination of defect engineering and strain engineering for the modulation of the mechanical, electronic and optical properties of monolayer transition metal dichalcogenides (TMDs).


2018 ◽  
Vol 6 (11) ◽  
pp. 2830-2839 ◽  
Author(s):  
Gul Rehman ◽  
S. A. Khan ◽  
B. Amin ◽  
Iftikhar Ahmad ◽  
Li-Yong Gan ◽  
...  

Based on (hybrid) first-principles calculations, material properties (structural, electronic, vibrational, optical, and photocatalytic) of van der Waals heterostructures and their corresponding monolayers (transition metal dichalcogenides and MXenes) are investigated.


RSC Advances ◽  
2020 ◽  
Vol 10 (51) ◽  
pp. 30529-30602 ◽  
Author(s):  
Hari Singh Nalwa

Two-dimensional transition metal dichalcogenides have attracted much attention in the field of optoelectronics due to their tunable bandgaps, strong interaction with light and tremendous capability for developing diverse van der Waals heterostructures with other nanomaterials.


2D Materials ◽  
2021 ◽  
Author(s):  
Icaro Rodrigues Lavor ◽  
Andrey Chaves ◽  
Francois M Peeters ◽  
Ben Van Duppen

Abstract Dirac plasmons in graphene hybridize with phonons of transition metal dichalcogenides (TMDs) when the materials are combined in so-called van der Waals heterostructures (vdWh), thus forming surface plasmon-phonon polaritons (SPPPs). The extend to which these modes are coupled depends on the TMD composition and structure, but also on the plasmons' properties. By performing realistic simulations that account for the contribution of each layer of the vdWh separately, we calculate how the strength of plasmon-phonon coupling depends on the number and composition of TMD layers, on the graphene Fermi energy and the specific phonon mode. From this, we present a semiclassical theory that is capable of capturing all relevant characteristics of the SPPPs. We find that it is possible to realize both strong and ultra-strong coupling regimes by tuning graphene's Fermi energy and changing TMD layer number.


Sign in / Sign up

Export Citation Format

Share Document