Comparison of low-temperature catalytic activity and H2O/SO2 resistance of the Ce-Mn/TiO2 NH3-SCR catalysts prepared by the reverse co-precipitation, co-precipitation and impregnation method

2022 ◽  
Vol 571 ◽  
pp. 151285
Author(s):  
Cheng Chen ◽  
Huidong Xie ◽  
Peiwen He ◽  
Xiao Liu ◽  
Chang Yang ◽  
...  
Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 618
Author(s):  
Huan Du ◽  
Zhitao Han ◽  
Xitian Wu ◽  
Chenglong Li ◽  
Yu Gao ◽  
...  

Er-modified FeMn/TiO2 catalysts were prepared through the wet impregnation method, and their NH3-SCR activities were tested. The results showed that Er modification could obviously promote SO2 resistance of FeMn/TiO2 catalysts at a low temperature. The promoting effect and mechanism were explored in detail using various techniques, such as BET, XRD, H2-TPR, XPS, TG, and in-situ DRIFTS. The characterization results indicated that Er modification on FeMn/TiO2 catalysts could increase the Mn4+ concentration and surface chemisorbed labile oxygen ratio, which was favorable for NO oxidation to NO2, further accelerating low-temperature SCR activity through the “fast SCR” reaction. As fast SCR reaction could accelerate the consumption of adsorbed NH3 species, it would benefit to restrain the competitive adsorption of SO2 and limit the reaction between adsorbed SO2 and NH3 species. XPS results indicated that ammonium sulfates and Mn sulfates formed were found on Er-modified FeMn/TiO2 catalyst surface seemed much less than those on FeMn/TiO2 catalyst surface, suggested that Er modification was helpful for reducing the generation or deposition of sulfate salts on the catalyst surface. According to in-situ DRIFTS the results of, the presence of SO2 in feeding gas imposed a stronger impact on the NO adsorption than NH3 adsorption on Lewis acid sites of Er-modified FeMn/TiO2 catalysts, gradually making NH3-SCR reaction to proceed in E–R mechanism rather than L–H mechanism. DRIFTS.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 324
Author(s):  
Jinkun Guan ◽  
Lusha Zhou ◽  
Weiquan Li ◽  
Die Hu ◽  
Jie Wen ◽  
...  

SO2 poisoning is a great challenge for the practical application of Mn-based catalysts in low-temperature selective catalytic reduction (SCR) reactions of NOx with NH3. A series of Gadolinium (Gd)-modified MnOx/ZSM-5 catalysts were synthesized via a citric acid–ethanol dispersion method and evaluated by low-temperature NH3-SCR. Among them, the GdMn/Z-0.3 catalyst with the molar ratio of Gd/Mn of 0.3 presented the highest catalytic activity, in which a 100% NO conversion could be obtained in the temperature range of 120–240 °C. Furthermore, GdMn/Z-0.3 exhibited good SO2 resistance compared with Mn/Z in the presence of 100 ppm SO2. The results of Brunauer–Emmett–Teller (BET), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction of H2 (H2-TPR) and temperature-programmed desorption of NH3 (NH3-TPD) illustrated that such catalytic performance was mainly caused by large surface area, abundant Mn4+ and surface chemisorbed oxygen species, strong reducibility and the suitable acidity of the catalyst. The in situ diffuse reflectance infrared Fourier transform spectra (DRIFTS) results revealed that the addition of Gd greatly inhibited the reaction between the SO2 and MnOx active sites to form bulk manganese sulfate, thus contributing to high SO2 resistance. Moreover, in situ DRIFTS experiments also shed light on the mechanism of low-temperature SCR reactions over Mn/Z and GdMn/Z-0.3, which both followed the Langmuir–Hinshelwood (L–H) and Eley–Rideal (E–R) mechanism.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 641
Author(s):  
Lukasz Wolski ◽  
Grzegorz Nowaczyk ◽  
Stefan Jurga ◽  
Maria Ziolek

The aim of the study was to establish the influence of a co-precipitation agent (i.e., NaOH–immediate precipitation; hexamethylenetetramine/urea–gradual precipitation and growth of nanostructures) on the properties and catalytic activity of as-synthesized Au-CeO2 nanocomposites. All catalysts were fully characterized with the use of XRD, nitrogen physisorption, ICP-OES, SEM, HR-TEM, UV-vis, XPS, and tested in low-temperature oxidation of benzyl alcohol as a model oxidation reaction. The results obtained in this study indicated that the type of co-precipitation agent has a significant impact on the growth of gold species. Immediate co-precipitation of Au-CeO2 nanostructures with the use of NaOH allowed obtainment of considerably smaller and more homogeneous in size gold nanoparticles than those formed by gradual co-precipitation and growth of Au-CeO2 nanostructures in the presence of hexamethylenetetramine or urea. In the catalytic tests, it was established that the key factor promoting high activity in low-temperature oxidation of benzyl alcohol was size of gold nanoparticles. The highest conversion of the alcohol was observed for the catalyst containing the smallest Au particle size (i.e., Au-CeO2 nanocomposite prepared with the use of NaOH as a co-precipitation agent).


2022 ◽  
Vol 518 ◽  
pp. 112069
Author(s):  
Xiaoling Wei ◽  
Runqi Zhao ◽  
Bingxian Chu ◽  
Shangzhi Xie ◽  
Qiuju qin ◽  
...  

Catalysts ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 724 ◽  
Author(s):  
Yan Cui ◽  
Leilei Xu ◽  
Mindong Chen ◽  
Chufei Lv ◽  
Xinbo Lian ◽  
...  

CuO-based catalysts are usually used for CO oxidation owing to their low cost and excellent catalytic activities. In this study, a series of metal oxide (La2O3, Fe2O3, PrO2, Sm2O3, and MnO2)-doped CuO-based catalysts with mesoporous Ce0.8Zr0.2O2 support were simply prepared by the incipient impregnation method and used directly as catalysts for CO catalytic oxidation. These mesoporous catalysts were systematically characterized by X-ray powder diffraction (XRD), N2 physisorption, transmission electron microscopy (TEM), energy-dispersed spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS), and H2 temperature programmed reduction (H2-TPR). It was found that the CuO and the dopants were highly dispersed among the mesoporous framework via the incipient impregnation method, and the strong metal framework interaction had been formed. The effects of the types of the dopants and the loading amounts of the dopants on the low-temperature catalytic performances were carefully studied. It was concluded that doped transition metal oxides could regulate the oxygen mobility and reduction ability of catalysts, further improving the catalytic activity. It was also found that the high dispersion of rare earth metal oxides (PrO2, Sm2O3) was able to prevent the thermal sintering and aggregation of CuO-based catalysts during the process of calcination. In addition, their presence also evidently improved the reducibility and significantly reduced the particle size of the CuO active sites for CO oxidation. The results demonstrated that the 15CuO-3Fe2O3/M-Ce80Zr20 catalyst with 3 wt. % of Fe2O3 showed the best low-temperature catalytic activity toward CO oxidation. Overall, the present Fe2O3-doped CuO-based catalysts with mesoporous nanocrystalline Ce0.8Zr0.2O2 solid solution as support were considered a promising series of catalysts for low-temperature CO oxidation.


2019 ◽  
Vol 9 (7) ◽  
pp. 1602-1608 ◽  
Author(s):  
Liwei Sun ◽  
Kai Li ◽  
Zeshu Zhang ◽  
Xuefeng Hu ◽  
Heyuan Tian ◽  
...  

Coating GO at low temperature and selectively depositing TiO2 on oxygen-containing functional groups on GO.


2020 ◽  
Vol 1001 ◽  
pp. 79-83
Author(s):  
Zhen Xing Han ◽  
Si Xi Guo ◽  
Kai Ming Li ◽  
Bing Yao ◽  
Ming Song ◽  
...  

The hydrogenation of CO2 to CH4 can realize the utilization of CO2, which has an important implications to both the energy and environment. As a result of the low catalytic activity of the supported Ni/SiO2 catalyst, the ZrO2 is added to improve its catalytic performance by the impregnation method. The experimental results show that ZrO2 is an effective promoter to enhance the low-temperature catalytic activity of Ni/SiO2 catalyst.


2017 ◽  
Vol 97 ◽  
pp. 47-50 ◽  
Author(s):  
Yu Nie ◽  
Qinghua Yan ◽  
Sining Chen ◽  
Dermot O'Hare ◽  
Qiang Wang

2016 ◽  
Vol 84 ◽  
pp. 75-79 ◽  
Author(s):  
Shuohan Yu ◽  
Ningxin Jiang ◽  
Weixin Zou ◽  
Lulu Li ◽  
Changjin Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document