Multiple heterojunction system of Bi2MoO6/WO3/Ag3PO4 with enhanced visible-light photocatalytic performance towards dye degradation

2019 ◽  
Vol 30 (9) ◽  
pp. 1910-1919 ◽  
Author(s):  
Haisheng Zhang ◽  
Dan Yu ◽  
Wei Wang ◽  
Pin Gao ◽  
Kaixuan Bu ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3948
Author(s):  
Lingfang Qiu ◽  
Zhiwei Zhou ◽  
Mengfan Ma ◽  
Ping Li ◽  
Jinyong Lu ◽  
...  

Novel visible-light responded aluminosilicophosphate-5 (SAPO-5)/g-C3N4 composite has been easily constructed by thermal polymerization for the mixture of SAPO-5, NH4Cl, and dicyandiamide. The photocatalytic activity of SAPO-5/g-C3N4 is evaluated by degrading RhB (30 mg/L) under visible light illumination (λ > 420 nm). The effects of SAPO-5 incorporation proportion and initial RhB concentration on the photocatalytic performance have been discussed in detail. The optimized SAPO-5/g-C3N4 composite shows promising degradation efficiency which is 40.6% higher than that of pure g-C3N4. The degradation rate improves from 0.007 min−1 to 0.022 min−1, which is a comparable photocatalytic performance compared with other g-C3N4-based heterojunctions for dye degradation. The migration of photo-induced electrons from g-C3N4 to the Al site of SAPO-5 should promote the photo-induced electron-hole pairs separation rate of g-C3N4 efficiently. Furthermore, the redox reactions for RhB degradation occur on the photo-induced holes in the g-C3N4 and Al sites in SAPO-5, respectively. This achievement not only improves the photocatalytic activity of g-C3N4 efficiently, but also broadens the application of SAPOs in the photocatalytic field.


RSC Advances ◽  
2016 ◽  
Vol 6 (97) ◽  
pp. 94361-94364 ◽  
Author(s):  
Hongwei Huang ◽  
Ke Xiao ◽  
Fan Dong ◽  
Jinjian Wang ◽  
Xin Du ◽  
...  

Sulfur doping simultaneously endows the wide-band-gap Bi2O2CO3 promoted band energy structure and charge separation achieving enhanced visible-light photocatalytic performance for dye degradation and NO removal.


RSC Advances ◽  
2015 ◽  
Vol 5 (49) ◽  
pp. 39592-39600 ◽  
Author(s):  
Zhou Sha ◽  
Jishan Wu

A BiOBr/UiO-66(Zr) composite was used as visible-light promoted photocatalyst for the degradation of rhodamine B with high activity and good catalyst stability.


2018 ◽  
Vol 22 (11) ◽  
pp. 3535-3546 ◽  
Author(s):  
I. Neelakanta Reddy ◽  
Adem Sreedhar ◽  
Ch. Venkata Reddy ◽  
Jaesool Shim ◽  
Migyung Cho ◽  
...  

2018 ◽  
Vol 42 (5) ◽  
pp. 3799-3807 ◽  
Author(s):  
Yide Han ◽  
Chunpeng Bai ◽  
Lianxia Zhang ◽  
Junbiao Wu ◽  
Hao Meng ◽  
...  

Through a simple grinding process, AgI–MIL-53(Fe) composites with superior interfacial contact between AgI and MIL-53(Fe) have been successfully fabricated and exhibit improved visible light photocatalytic activity for dye degradation.


2016 ◽  
Vol 52 (2) ◽  
pp. 354-357 ◽  
Author(s):  
Hongwei Huang ◽  
Ke Xiao ◽  
Shixin Yu ◽  
Fan Dong ◽  
Tierui Zhang ◽  
...  

Iodide surface decoration enables the wide-band-gap Bi2O2CO3 to possess a continuously tunable band gap and profoundly boosted visible-light photocatalytic performance for dye degradation and NO removal.


RSC Advances ◽  
2015 ◽  
Vol 5 (43) ◽  
pp. 33747-33754 ◽  
Author(s):  
Lang Chen ◽  
Jie He ◽  
Qing Yuan ◽  
Yan-Wen Zhang ◽  
Fu Wang ◽  
...  

Novel CuS–Bi2S3 heterojunctions were fabricated by a one-step solvothermal method using glycol as solvent and l-lysine as structure-directing reagent. The composites showed enhanced photocatalytic activity towards dye degradation under visible light.


2020 ◽  
Vol 10 (9) ◽  
pp. 3238
Author(s):  
Min Liu ◽  
Guangxin Wang ◽  
Panpan Xu ◽  
Yanfeng Zhu ◽  
Wuhui Li

In this study, the Ag3PO4/SnO2 heterojunction on carbon cloth (Ag3PO4/SnO2/CC) was successfully fabricated via a facile two-step process. The results showed that the Ag3PO4/SnO2/CC heterojunction exhibited a remarkable photocatalytic performance for the degradation of Rhodamine B (RhB) and methylene blue (MB), under visible light irradiation. The calculated k values for the degradation of RhB and MB over Ag3PO4/SnO2/CC are 0.04716 min−1 and 0.04916 min−1, which are higher than those calculated for the reactions over Ag3PO4/SnO2, Ag3PO4/CC and SnO2/CC, respectively. The enhanced photocatalytic activity could mainly be attributed to the improved separation efficiency of photogenerated electron-hole pairs, after the formation of the Ag3PO4/SnO2/CC heterojunction. Moreover, carbon cloth with a large specific surface area and excellent conductivity was used as the substrate, which helped to increase the contact area of dye solution with photocatalysts and the rapid transfer of photogenerated electrons. Notably, when compared with the powder catalyst, the catalysts supported on carbon cloth are easier to quickly recycle from the pollutant solution, thereby reducing the probability of recontamination.


Sign in / Sign up

Export Citation Format

Share Document