Breeding strategy and rearing environment effects on the disease resistance of cultured Chinook salmon (Oncorhynchus tshawytscha)

Aquaculture ◽  
2014 ◽  
Vol 422-423 ◽  
pp. 160-166 ◽  
Author(s):  
L.A. Becker ◽  
M. Kirkland ◽  
J.W. Heath ◽  
D.D. Heath ◽  
B. Dixon
2015 ◽  
Vol 72 (5) ◽  
pp. 673-683 ◽  
Author(s):  
Barry N. Madison ◽  
John W. Heath ◽  
Daniel D. Heath ◽  
Nicholas J. Bernier

To determine whether early rearing environment and parental breeding strategy affect the social behaviour and the endocrine response to stressors in juvenile Chinook salmon (Oncorhynchus tshawytscha), offspring (1–2 g) from traditional hatchery breeding or parental mate choice breeding were reared in a hatchery setting or in seminatural channels. Once ∼30 g, 9-month-old hatchery and mate choice fish from both rearing environments were exposed to one of four treatments: (i) sampled, (ii) air-exposed (AE) for 60 s and sampled 1 h later, (iii) sampled after 5 days of continuous dyadic social interaction (SI), or (iv) AE and allowed to interact for 5 days (AE/SI). In the hatchery environment, while hatchery fish were dominant in 70% and 80% of the dyadic trials in the SI and AE/SI treatments, respectively, plasma cortisol, growth hormone, and insulin-like growth factor I levels did not differ between hatchery and mate choice fish. In contrast, when reared in a seminatural environment, mate choice fish were dominant in 70% of the dyadic trials in the SI and AE/SI treatments, and clear differences in plasma hormone levels emerged between hatchery and mate choice fish. Therefore, while we found no evidence that breeding strategy affects social status, familiarity with the early rearing environment (i.e., from emergence until 1–2 g) enhanced the competitive ability of juvenile Chinook salmon during dyadic interactions. Early rearing environment also affected the endocrine responses to stressors, and freshwater seminatural channel environments were associated with elevated hormonal responsiveness.


1989 ◽  
Vol 120 (1) ◽  
pp. 135-142 ◽  
Author(s):  
A. G. Maule ◽  
R. A. Tripp ◽  
S. L. Kaattari ◽  
C. B. Schreck

ABSTRACT We examined the effects of acute stress on the immune system and disease resistance of juvenile chinook salmon (Oncorhynchus tshawytscha) in laboratory and clinical trials. Immune function, as measured by the ability of lymphocytes from the anterior kidney to generate specific antibody-producing cells (APC) in vitro, was depressed 4 h after stress, when plasma cortisol levels were highest. At the same time, resistance to the fish pathogen, Vibrio anguillarum, was also depressed. Compared with controls, plasma cortisol and APC of stressed fish were unchanged after 24 h, and disease resistance was enhanced as evidenced by higher survival rate and longer mean time to death of mortalities. After 7 days, even though numbers of APC were depressed, plasma cortisol concentration and disease resistance did not differ from controls. This pattern was generally the same, independent of the type of stress applied: i.e. being held out of water in a dipnet for 30 s, manipulation during hatchery operations for 4 h, or transportation for 9 h. These and earlier findings suggest that similar endocrine-immune interactions operate in the mammalian and salmonid systems during acute stress. Journal of Endocrinology (1989) 120, 135–142


1992 ◽  
Vol 14 ◽  
pp. 81-89 ◽  
Author(s):  
ML Kent ◽  
J Ellis ◽  
JW Fournie ◽  
SC Dawe ◽  
JW Bagshaw ◽  
...  

Author(s):  
Nicole M. Aha ◽  
Peter B. Moyle ◽  
Nann A. Fangue ◽  
Andrew L. Rypel ◽  
John R. Durand

AbstractLoss of estuarine and coastal habitats worldwide has reduced nursery habitat and function for diverse fishes, including juvenile Chinook salmon (Oncorhynchus tshawytscha). Underutilized off-channel habitats such as flooded rice fields and managed ponds present opportunities for improving rearing conditions and increasing habitat diversity along migratory corridors. While experiments in rice fields have shown enhanced growth rates of juvenile fishes, managed ponds are less studied. To evaluate the potential of these ponds as a nursery habitat, juvenile Chinook salmon (~ 2.8 g, 63 mm FL) were reared in cages in four contrasting locations within Suisun Marsh, a large wetland in the San Francisco Estuary. The locations included a natural tidal slough, a leveed tidal slough, and the inlet and outlet of a tidally muted managed pond established for waterfowl hunting. Fish growth rates differed significantly among locations, with the fastest growth occurring near the outlet in the managed pond. High zooplankton biomass at the managed pond outlet was the best correlate of salmon growth. Water temperatures in the managed pond were also cooler and less variable compared to sloughs, reducing thermal stress. The stress of low dissolved oxygen concentrations within the managed pond was likely mediated by high concentrations of zooplankton and favorable temperatures. Our findings suggest that muted tidal habitats in the San Francisco Estuary and elsewhere could be managed to promote growth and survival of juvenile salmon and other native fishes.


1999 ◽  
Vol 56 (4) ◽  
pp. 578-589 ◽  
Author(s):  
Jeffrey J Hard ◽  
William R Heard

In 1976 chinook salmon (Oncorhynchus tshawytscha) gametes from the Chickamin and Unuk rivers in southeastern Alaska were transplanted 250 km to establish hatchery runs at Little Port Walter (LPW), Baranof Island. From 1977 to 1989, 1 862 058 marked smolts from 12 broods were released from LPW. Homing and straying were estimated from adult recoveries at 25 locations in Alaska and British Columbia between 1981 and 1989. Of 22 198 LPW fish recovered over this period, 21 934 (98.8%) were collected at LPW. Of 264 fish recovered elsewhere, 38.3% were within 7 km of LPW; 64.4% were within 25 km of LPW. No LPW fish were recovered from the ancestral rivers, but nine fish were recovered from rivers supporting wild chinook salmon. Straying declined with distance from the release site but varied between hatcheries and streams. Straying declined with increasing age and run size. Straying was similar between the populations but varied among broods, and analysis of straying in experimental groups provided evidence for a heritable component. Males strayed more often than females. Population, gender, run size, and recovery age interacted to produce substantial variation in straying, indicating that run composition can produce complex straying responses.


Sign in / Sign up

Export Citation Format

Share Document