Alleviative effects of dietary Indian lotus leaves on heavy metals-induced hepato-renal toxicity, oxidative stress, and histopathological alterations in Nile tilapia, Oreochromis niloticus (L.)

Aquaculture ◽  
2019 ◽  
Vol 509 ◽  
pp. 198-208 ◽  
Author(s):  
Afaf N. Abdel Rahman ◽  
Mohamed ElHady ◽  
Mohammed E. Hassanin ◽  
Amany Abdel-Rahman Mohamed
Author(s):  
Juliane Silberschmidt Freitas ◽  
Thiago Scremin Boscolo Pereira ◽  
Camila Nomura Pereira Boscolo ◽  
Mariana Navarro Garcia ◽  
Ciro Alberto de Oliveira Ribeiro ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2983
Author(s):  
Fagr Kh. Abdel-Gawad ◽  
Wagdy K. B. Khalil ◽  
Samah M. Bassem ◽  
Vikas Kumar ◽  
Costantino Parisi ◽  
...  

A two-fold integrated research study was conducted; firstly, to understand the effects of copper (Cu) and zinc (Zn) on the growth and oxidative stress in Nile tilapia, Oreochromis niloticus; secondly, to study the beneficial effects of the duckweed Lemna minor L. as a heavy metal remover in wastewater. Experiments were conducted in mesocosms with and without duckweed. Tilapia fingerlings were exposed to Cu (0.004 and 0.02 mg L−1) and Zn (0.5 and 1.5 mg L−1) and fish fed for four weeks. We evaluated the fish growth performance, the hepatic DNA structure using comet assay, the expression of antioxidative genes (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPx and glutathione-S-transferase, GST) and GPx and GST enzymatic activity. The results showed that Zn exhibited more pronounced toxic effects than Cu. A low dose of Cu did not influence the growth whereas higher doses of Cu and Zn significantly reduced the growth rate of tilapia compared to the control, but the addition of duckweed prevented weight loss. Furthermore, in the presence of a high dose of Cu and Zn, DNA damage decreased, antioxidant gene expressions and enzymatic activities increased. In conclusion, the results suggest that duckweed and Nile tilapia can be suitable candidates in metal remediation wastewater assessment programs.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Nahid A.A. Siddig ◽  
Asma A. Ahmed ◽  
Sarra A.M. Saad ◽  
Faisal Hammad Mekky Koua

Municipal sewage sludge from wastewater treatment is an important nutritional source for sustainable agriculture. Here, we report on the assessment of the accumulation of heavy metals in Nile tilapia Oreochromis niloticus (Trewavas 1983) fed on earthworms Eisenia fetida reared on soil treated with different concentrations of sewage sludge (25% and 100%) during sludge-earthworm-fish short-term cycling. In this short-term cycling the Nile tilapia collected from the White Nile were chosen as final consumers, whereas the earthworms reared on loam soil mixed with different ratios of sludge were used as a feed for the final consumers. Our results indicate that the concentrations of Cd2+, Cr2+, Pb2+ and Zn2+ in the sludge treated soil are proportional to the sludge content in the soil. Importantly, the accumulation of these heavy metals was significantly low in the earthworms and the Nile tilapia in comparison with the treated soil and that these concentrations in the Nile tilapia were below the international limits recommended by the US Environmental Protection Agency (2014). Moreover, the growth and overall flesh quality of the fish were improved as indicated by the growth increase up to 146% when fed on earthworm reared in 100% sludge. Additionally, our physicochemical properties (i.e. pH, soil moisture, electric conductivity and organic matters) evaluation on the soil indicates an improvement of the soil quality when mixed with sewage sludge. These results suggest a sustainable application of sewage sludge in fish culture owing to its high nutritional values, low cost, and low risk of hazardous heavy metals when using primary consumers with heavy metals bioaccumulation capability such as E. fetida.


Sign in / Sign up

Export Citation Format

Share Document