Arthropod eyes: The early Cambrian fossil record and divergent evolution of visual systems

2016 ◽  
Vol 45 (2) ◽  
pp. 152-172 ◽  
Author(s):  
Nicholas J. Strausfeld ◽  
Xiaoya Ma ◽  
Gregory D. Edgecombe ◽  
Richard A. Fortey ◽  
Michael F. Land ◽  
...  
2002 ◽  
Vol 76 (3) ◽  
pp. 565-569 ◽  
Author(s):  
Brian R. Pratt

The fossil record of siliceous sponges—Hexactinellida and demosponge “Lithistida”—hinges upon both body fossils plus isolated spicules mostly recovered from limestones by acid digestion. The earliest record of siliceous sponge spicules extends back to the late Neoproterozoic of Hubei, southern China (Steiner et al., 1993) and Mongolia (Brasier et al., 1997), and body fossils attributed to the hexactinellids have been described from the Ediacaran of South Australia (Gehling and Rigby, 1996); thus they are the oldest-known definite representatives of extant animal phyla. The Early Cambrian saw a remarkable diversification in spicule morphology, with the appearance of an essentially “modern” array of forms (Zhang and Pratt, 1994). While a diversity decline may have occurred with the late Early Cambrian extinction(s), the subsequent Paleozoic and Mesozoic fossil record of spicules shows a relatively consistent range of morphologies (e.g., Mostler, 1986; Bengtson et al., 1990; Webby and Trotter, 1993; Kozur et al., 1996; Zhang and Pratt, 2000). However, because spicule form is not restricted to individual taxa and many sponge species secrete a variety of spicule shapes, it is difficult to gauge true siliceous sponge diversity and to explore their biostratigraphic utility using only isolated spicules.


2004 ◽  
Vol 10 ◽  
pp. 79-92 ◽  
Author(s):  
Bruce S. Lieberman ◽  
Joseph G. Meert

Biogeographic patterns from early Cambrian trilobites are used to evaluate the nature and timing of the Cambrian radiation. Results from a phylogenetic biogeographic analysis reveal that patterns of vicariance are compatible with a vicariant distribution of trilobites across what were originally joined elements of the supercontinent Pannotia; further, there is limited evidence for coordinated range expansion or geo-dispersal by these trilobites. As Pannotia had split apart sometime between 550-600 Ma this suggests that trilobites, and by extension several other metazoan taxa, had begun to diversify by this interval. This result suggests that there may have been some period of cryptic diversification by metazoans prior to the Cambrian radiation, though the inferred length of this interval is not as long as that invoked by some molecular studies. Perhaps trilobites existed at low population densities in marginal environments before they became paleontologically emergent. Even though the results suggest some apparent gap in the fossil record, the evolutionary signature of this gap is still preserved in the paleobiological patterns from the fossil record, indicating that the fossil record is still the one best source of data on the nature of key episodes in the history of life, like the Cambrian radiation.


Geosciences ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 354 ◽  
Author(s):  
McMenamin

Deuterostomes make a sudden appearance in the fossil record during the early Cambrian. Two bilaterian groups, the chordates and the vetulicolians, are of particular interest for understanding early deuterostome evolution, and the main objective of this review is to examine the Cambrian diversity of these two deuterostome groups. The subject is of particular interest because of the link to vertebrates, and because of the enigmatic nature of vetulicolians. Lagerstätten in China and elsewhere have dramatically improved our understanding of the range of variation in these ancient animals. Cephalochordate and vertebrate body plans are well established at least by Cambrian Series 2. Taken together, roughly a dozen chordate genera and fifteen vetulicolian genera document part of the explosive radiation of deuterostomes at the base of the Cambrian. The advent of deuterostomes near the Cambrian boundary involved both a reversal of gut polarity and potentially a two-sided retinoic acid gradient, with a gradient discontinuity at the midpoint of the organism that is reflected in the sharp division of vetulicolians into anterior and posterior sections. A new vetulicolian (Shenzianyuloma yunnanense nov. gen. nov. sp.) with a laterally flattened, polygonal anterior section provides significant new data regarding vetulicolians. Its unsegmented posterior region (‘tail’) bears a notochord and a gut trace with diverticula, both surrounded by myotome cones.


2000 ◽  
Vol 74 (5) ◽  
pp. 979-982 ◽  
Author(s):  
Xingliang Zhang ◽  
Jian Han ◽  
Degan Shu

The early Cambrian Chengjiang Lagerstatte, generally regarded as late Atdabanian (Qian and Bengtson, 1989; Bengtson et al., 1990), has become celebrated for perhaps the earliest biota of soft-bodied organisms known from the fossil record and has proven to be critical to our understanding of early metazoan evolution. The Sirius Passet fauna from Peary Land, North Greenland, another important repository of soft-bodied and poorly sclerotized fossils, was also claimed as Early Cambrian (Conway Morris et al., 1987; Budd, 1995). The exact stratigraphic position of the Sirius Passet fauna (Buen Formation) is still uncertain, although the possibility of late Atdabanian age was proposed (Vidal and Peel, 1993). Recent work dates it in the “Nevadella” Biozone (Budd and Peel, 1998). It therefore appears to be simultaneous with or perhaps slightly younger than Chengjiang Lagerstatte, Eoredlichia Biozone (Zhuravlev, 1995). The Emu Bay Shale of Kangaroo Island, South Australia, has long been famous as a source of magnificent specimens of the trilobites Redlichia takooensis and Hsunaspis bilobata. It is additionally important as the only site in Australia so far to yield a Burgess-Shale-type biota (Glaessner, 1979; Nedin, 1992). The Emu Bay Shale was considered late Early Cambrian in age (Daily, 1956; Öpik, 1975). But Zhang et al.(1980) reassessed its age based on data from the Chinese Early Cambrian. The occurrence of Redlichia takooensis and closely related species of Hsunaspis indicates an equivalence to the Tsanglangpuian in the Chinese sequence, and the contemporary South Australia fauna correlate with the Botomian of Siberia (Bengtson et al., 1990). Thus the Emu Bay Shale is younger than the upper Atdabanian Chengjiang Lagerstatte, Chiungchussuian.


1996 ◽  
Vol 351 (1344) ◽  
pp. 1131-1145 ◽  

The first discovery of the appendages belonging to the Bradoriida s.str. Arthropoda - generally supposed to have been ostracodes until now — is reported in Kunmingella from the early Cambrian soft-bodied ‘Chengjiang’ Lagerstatte of China. Although this evidence does not particularly clarify the affinities of Kunmingella within the Arthropoda, it does demonstrate that this genus, and by implication other taxonomically allied bradoriids in general, are neither ostracode, crustacean s.str. nor closely related to the Phosphatocopida (also conventionally classed as ostracodes). This has far-reaching implications for the stratigraphical distribution and evolution of the Class Ostracoda: that much (all?) of their Cambrian record is most likely spurious. The discovery also endorses the fact that arthropod radiation involved several different types of convergently bivalved groups.


1980 ◽  
Vol 3 ◽  
pp. 86-93
Author(s):  
James Sprinkle

The initial explosive radiation of echinoderms in the Cambrian and Ordovician is very likely the single most spectacular evolutionary pattern shown by echinoderms during their long fossil record. This radiation involved 19–20 echinoderm classes and lasted from the Early Cambrian (perhaps latest Precambrian) to the end of the Middle Ordovician. It is important because in many ways this initial radiation determined the entire Paleozoic record for echinoderms. In addition, it is almost a textbook example of a major adaptive radiation (Raup and Stanley, 1978, p. 307, 357–360), and also fits nicely the two-stage metazoan diversification model for the Early Paleozoic outlined by Sepkoski (1979).


Paleobiology ◽  
1981 ◽  
Vol 7 (1) ◽  
pp. 36-53 ◽  
Author(s):  
J. John Sepkoski

Data on numbers of marine families within 91 metazoan classes known from the Phanerozoic fossil record are analyzed. The distribution of the 2800 fossil families among the classes is very uneven, with most belonging to a small minority of classes. Similarly, the stratigraphic distribution of the classes is very uneven, with most first appearing early in the Paleozoic and with many of the smaller classes becoming extinct before the end of that era. However, despite this unevenness, a Q-mode factor analysis indicates that the structure of these data is rather simple. Only three factors are needed to account for more than 90% of the data. These factors are interpreted as reflecting the three great “evolutionary faunas” of the Phanerozoic marine record: a trilobite-dominated Cambrian fauna, a brachiopod-dominated later Paleozoic fauna, and a mollusc-dominated Mesozoic-Cenozoic, or “modern,” fauna. Lesser factors relate to slow taxonomic turnover within the major faunas through time and to unique aspects of particular taxa and times.Each of the three major faunas seems to have its own characteristic diversity so that its expansion or contraction appears as being intimately associated with a particular phase in the history of total marine diversity. The Cambrian fauna expands rapidly during the Early Cambrian radiations and maintains dominance during the Middle to Late Cambrian “equilibrium.” The Paleozoic fauna then ascends to dominance during the Ordovician radiations, which increase diversity dramatically; this new fauna then maintains dominance throughout the long interval of apparent equilibrium that lasts until the end of the Paleozoic Era. The modern fauna, which slowly increases in importance during the Paleozoic Era, quickly rises to dominance with the Late Permian extinctions and maintains that status during the general rise in diversity to the apparent maximum in the Neogene. The increase in diversity associated with the expansion of each new fauna appears to coincide with an approximately exponential decline of the previously dominant fauna, suggesting possible displacement of each evolutionary fauna by its successor.


Sign in / Sign up

Export Citation Format

Share Document