A context sensitive energy thresholding based 3D Otsu function for image segmentation using human learning optimization

2019 ◽  
Vol 82 ◽  
pp. 105570 ◽  
Author(s):  
Ashish Kumar Bhandari ◽  
Immadisetty Vinod Kumar
Author(s):  
Pankaj Pal ◽  
Siddhartha Bhattacharyya ◽  
Nishtha Agrawal

A method for grayscale image segmentation is presented using a quantum-inspired self-organizing neural network architecture by proper selection of the threshold values of the multilevel sigmoidal activation function (MUSIG). The context-sensitive threshold values in the different positions of the image are measured based on the homogeneity of the image content and used to extract the object by means of effective thresholding of the multilevel sigmoidal activation function guided by the quantum superposition principle. The neural network architecture uses fuzzy theoretic concepts to assist in the segmentation process. The authors propose a grayscale image segmentation method endorsed by context-sensitive thresholding technique. This quantum-inspired multilayer neural network is adapted with self-organization. The architecture ensures the segmentation process for the real-life images as well as synthetic images by selecting intensity parameter as the threshold value.


Author(s):  
Pankaj Pal ◽  
Siddhartha Bhattacharyya

In this chapter, the authors propose the true color image segmentation in real-life images as well as synthetic images by means of thresholded MUSIG function, which is learnt by quantum-formulated self-supervised neural network according to change of phase. In the initial phase, the true color image is segregated in the source module to fragment three different components—red, green, and blue colors—for three parallel layers of QMLSONN architecture. This information is fused in the sink module of QPSONN to get the preferred output. Each pixel of the input image is converted to the corresponding qubit neurons according to the phase manner. The interconnection weights between the layers are represented by qubit rotation gates. The quantum measurement at the output layer destroys the quantum states and gets the output for the processed information by means of quantum backpropagation algorithm using fuzziness measure.


2014 ◽  
Vol 23 ◽  
pp. 122-127 ◽  
Author(s):  
Swarnajyoti Patra ◽  
Rahul Gautam ◽  
Anshu Singla

Author(s):  
Pankaj Pal ◽  
Siddhartha Bhattacharyya ◽  
Nishtha Agrawal

A method for grayscale image segmentation is presented using a quantum-inspired self-organizing neural network architecture by proper selection of the threshold values of the multilevel sigmoidal activation function (MUSIG). The context-sensitive threshold values in the different positions of the image are measured based on the homogeneity of the image content and used to extract the object by means of effective thresholding of the multilevel sigmoidal activation function guided by the quantum superposition principle. The neural network architecture uses fuzzy theoretic concepts to assist in the segmentation process. The authors propose a grayscale image segmentation method endorsed by context-sensitive thresholding technique. This quantum-inspired multilayer neural network is adapted with self-organization. The architecture ensures the segmentation process for the real-life images as well as synthetic images by selecting intensity parameter as the threshold value.


2014 ◽  
Vol 25 (4) ◽  
pp. 233-238 ◽  
Author(s):  
Martin Peper ◽  
Simone N. Loeffler

Current ambulatory technologies are highly relevant for neuropsychological assessment and treatment as they provide a gateway to real life data. Ambulatory assessment of cognitive complaints, skills and emotional states in natural contexts provides information that has a greater ecological validity than traditional assessment approaches. This issue presents an overview of current technological and methodological innovations, opportunities, problems and limitations of these methods designed for the context-sensitive measurement of cognitive, emotional and behavioral function. The usefulness of selected ambulatory approaches is demonstrated and their relevance for an ecologically valid neuropsychology is highlighted.


1996 ◽  
Vol 41 (6) ◽  
pp. 558-559
Author(s):  
Timothy Anderson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document