A novel context sensitive multilevel thresholding for image segmentation

2014 ◽  
Vol 23 ◽  
pp. 122-127 ◽  
Author(s):  
Swarnajyoti Patra ◽  
Rahul Gautam ◽  
Anshu Singla
2017 ◽  
Vol 8 (4) ◽  
pp. 58-83 ◽  
Author(s):  
Abdul Kayom Md Khairuzzaman ◽  
Saurabh Chaudhury

Multilevel thresholding is a popular image segmentation technique. However, computational complexity of multilevel thresholding increases very rapidly with increasing number of thresholds. Metaheuristic algorithms are applied to reduce computational complexity of multilevel thresholding. A new method of multilevel thresholding based on Moth-Flame Optimization (MFO) algorithm is proposed in this paper. The goodness of the thresholds is evaluated using Kapur's entropy or Otsu's between class variance function. The proposed method is tested on a set of benchmark test images and the performance is compared with PSO (Particle Swarm Optimization) and BFO (Bacterial Foraging Optimization) based methods. The results are analyzed objectively using the fitness function and the Peak Signal to Noise Ratio (PSNR) values. It is found that MFO based multilevel thresholding method performs better than the PSO and BFO based methods.


2018 ◽  
pp. 771-797
Author(s):  
Abdul Kayom Md Khairuzzaman ◽  
Saurabh Chaudhury

Multilevel thresholding is a popular image segmentation technique. However, computational complexity of multilevel thresholding increases very rapidly with increasing number of thresholds. Metaheuristic algorithms are applied to reduce computational complexity of multilevel thresholding. A new method of multilevel thresholding based on Moth-Flame Optimization (MFO) algorithm is proposed in this paper. The goodness of the thresholds is evaluated using Kapur's entropy or Otsu's between class variance function. The proposed method is tested on a set of benchmark test images and the performance is compared with PSO (Particle Swarm Optimization) and BFO (Bacterial Foraging Optimization) based methods. The results are analyzed objectively using the fitness function and the Peak Signal to Noise Ratio (PSNR) values. It is found that MFO based multilevel thresholding method performs better than the PSO and BFO based methods.


Sign in / Sign up

Export Citation Format

Share Document