scholarly journals Harris Hawks optimisation with Simulated Annealing as a deep feature selection method for screening of COVID-19 CT-scans

2021 ◽  
pp. 107698
Author(s):  
Rajarshi Bandyopadhyay ◽  
Arpan Basu ◽  
Erik Cuevas ◽  
Ram Sarkar
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 13378-13389
Author(s):  
Muhammad Adeel Asghar ◽  
Muhammad Jamil Khan ◽  
Humayun Shahid ◽  
Mohammad Shorfuzzaman ◽  
Neal Naixue Xiong ◽  
...  

Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Feature selection sometimes also known as attribute subset selection is a process in which optimal subset of features are elected with respect to target data by reducing dimensionality and removing irrelevant data. There will be 2^n possible solutions for a dataset having n number of features which is difficult to solve by conventional attribute selection method. In such cases metaheuristic-based methods generally outruns the conventional methods. Therefore, this paper introduces a binary metaheuristic feature selection method bGWOSA which is based on grey wolf optimization and simulated annealing. The proposed feature selection method uses simulated annealing for enhancing the exploitation rate of grey wolf optimization method. The performance of the proposed binary feature selection method has been examined on the ten feature selection benchmark datasets taken from UCI repository and compared with binary cuckoo search, binary particle swarm optimization, binary grey wolf optimization, binary bat algorithm and binary hybrid whale optimization method. Statistical analysis and Experimental results validate the efficacy of proposed method.


2009 ◽  
Vol 29 (10) ◽  
pp. 2812-2815
Author(s):  
Yang-zhu LU ◽  
Xin-you ZHANG ◽  
Yu QI

2019 ◽  
Vol 12 (4) ◽  
pp. 329-337 ◽  
Author(s):  
Venubabu Rachapudi ◽  
Golagani Lavanya Devi

Background: An efficient feature selection method for Histopathological image classification plays an important role to eliminate irrelevant and redundant features. Therefore, this paper proposes a new levy flight salp swarm optimizer based feature selection method. Methods: The proposed levy flight salp swarm optimizer based feature selection method uses the levy flight steps for each follower salp to deviate them from local optima. The best solution returns the relevant and non-redundant features, which are fed to different classifiers for efficient and robust image classification. Results: The efficiency of the proposed levy flight salp swarm optimizer has been verified on 20 benchmark functions. The anticipated scheme beats the other considered meta-heuristic approaches. Furthermore, the anticipated feature selection method has shown better reduction in SURF features than other considered methods and performed well for histopathological image classification. Conclusion: This paper proposes an efficient levy flight salp Swarm Optimizer by modifying the step size of follower salp. The proposed modification reduces the chances of sticking into local optima. Furthermore, levy flight salp Swarm Optimizer has been utilized in the selection of optimum features from SURF features for the histopathological image classification. The simulation results validate that proposed method provides optimal values and high classification performance in comparison to other methods.


Author(s):  
Fatemeh Alighardashi ◽  
Mohammad Ali Zare Chahooki

Improving the software product quality before releasing by periodic tests is one of the most expensive activities in software projects. Due to limited resources to modules test in software projects, it is important to identify fault-prone modules and use the test sources for fault prediction in these modules. Software fault predictors based on machine learning algorithms, are effective tools for identifying fault-prone modules. Extensive studies are being done in this field to find the connection between features of software modules, and their fault-prone. Some of features in predictive algorithms are ineffective and reduce the accuracy of prediction process. So, feature selection methods to increase performance of prediction models in fault-prone modules are widely used. In this study, we proposed a feature selection method for effective selection of features, by using combination of filter feature selection methods. In the proposed filter method, the combination of several filter feature selection methods presented as fused weighed filter method. Then, the proposed method caused convergence rate of feature selection as well as the accuracy improvement. The obtained results on NASA and PROMISE with ten datasets, indicates the effectiveness of proposed method in improvement of accuracy and convergence of software fault prediction.


Sign in / Sign up

Export Citation Format

Share Document