Prediction of expected global climate change by forecasting of galactic cosmic ray intensity time variation in near future based on solar magnetic field data

2005 ◽  
Vol 35 (3) ◽  
pp. 491-495 ◽  
Author(s):  
A.V. Belov ◽  
L.I. Dorman ◽  
R.T. Gushchina ◽  
V.N. Obridko ◽  
B.D. Shelting ◽  
...  
2013 ◽  
Vol 27 (17) ◽  
pp. 1350073 ◽  
Author(s):  
Q.-B. LU

This study is focused on the effects of cosmic rays (solar activity) and halogen-containing molecules (mainly chlorofluorocarbons — CFCs) on atmospheric ozone depletion and global climate change. Brief reviews are first given on the cosmic-ray-driven electron-induced-reaction (CRE) theory for O 3 depletion and the warming theory of halogenated molecules for climate change. Then natural and anthropogenic contributions to these phenomena are examined in detail and separated well through in-depth statistical analyses of comprehensive measured datasets of quantities, including cosmic rays (CRs), total solar irradiance, sunspot number, halogenated gases (CFCs, CCl 4 and HCFCs), CO 2, total O 3, lower stratospheric temperatures and global surface temperatures. For O 3 depletion, it is shown that an analytical equation derived from the CRE theory reproduces well 11-year cyclic variations of both polar O 3 loss and stratospheric cooling, and new statistical analyses of the CRE equation with observed data of total O 3 and stratospheric temperature give high linear correlation coefficients ≥ 0.92. After the removal of the CR effect, a pronounced recovery by 20 ~ 25 % of the Antarctic O 3 hole is found, while no recovery of O 3 loss in mid-latitudes has been observed. These results show both the correctness and dominance of the CRE mechanism and the success of the Montreal Protocol. For global climate change, in-depth analyses of the observed data clearly show that the solar effect and human-made halogenated gases played the dominant role in Earth's climate change prior to and after 1970, respectively. Remarkably, a statistical analysis gives a nearly zero correlation coefficient (R = -0.05) between corrected global surface temperature data by removing the solar effect and CO 2 concentration during 1850–1970. In striking contrast, a nearly perfect linear correlation with coefficients as high as 0.96–0.97 is found between corrected or uncorrected global surface temperature and total amount of stratospheric halogenated gases during 1970–2012. Furthermore, a new theoretical calculation on the greenhouse effect of halogenated gases shows that they (mainly CFCs) could alone result in the global surface temperature rise of ~0.6°C in 1970–2002. These results provide solid evidence that recent global warming was indeed caused by the greenhouse effect of anthropogenic halogenated gases. Thus, a slow reversal of global temperature to the 1950 value is predicted for coming 5 ~ 7 decades. It is also expected that the global sea level will continue to rise in coming 1 ~ 2 decades until the effect of the global temperature recovery dominates over that of the polar O 3 hole recovery; after that, both will drop concurrently. All the observed, analytical and theoretical results presented lead to a convincing conclusion that both the CRE mechanism and the CFC-warming mechanism not only provide new fundamental understandings of the O 3 hole and global climate change but have superior predictive capabilities, compared with the conventional models.


2015 ◽  
Vol 61 (1) ◽  
pp. 26-31
Author(s):  
Phan Dao ◽  
Nguyễn Thuy Lan Chi

Abstract Ho Chi Minh City (HCMC), the largest city in Vietnam, is steadily growing, certainly towards a mega city in the near future. Like other mega cities at the boom stage, it has to face with serious environmental matters insolvable for many years. The situation may be worse under the effects of global climate change, geological subsidence due to non-standard construction and sea level rise. The situation of HCMC can be damaged or even broken by resonant effects of unsolved environmental matters and latent impacts of climate change. This article shows the challenges to the urban sustainable development under the duo effect of urban environmental matters and climate change in Ho Chi Minh City. Opportunities and strategic directions to overcome the challenges are also analyzed and recommended.


Author(s):  
Fraser Baird ◽  
Alexander MacKinnon

For the first time, based on the experimental data of AMS-02, a three-parameter spectrum of variations of ga - lactic cosmic rays was obtained in the range of rigidity 1- 20 GV, to which neutron monitors are most sensitive. It was found that during the period of negative polarity of the solar magnetic field, a power-law spectrum of va - riations is observed with a strong exponential decay in the region of high rigidity. When the polarity changes to positive at the beginning of the new 24th solar cycle, the spectrum of cosmic ray variations becomes purely po- wer-law. The transition to the experimentally obtained spectrum of variations will make it possible to remove a number of uncertainties and increase the accuracy of the analysis of data from the ground network of detectors. This will make it possible to retrospectively obtain fluxes of galactic protons with an average monthly resolution for the period of the space era based on ground-based monitoring.


Author(s):  
Supriya Tiwari ◽  
Barkha Vaish ◽  
Pooja Singh

Global food security is one if the major issues that needs utmost attention of the scientific community in near future. The growing food demand of the society is putting enormous pressure on the resources over which the food supply of the civilization depends. The two major components affecting the global food security are population and global climate change. The rate at which the population of the World is increasing, the food production needs to be doubled to meet the growing requirements. Consequences of global climate change not only reduce the productivity of major staple crops, but also cause destruction of the arable land that can be used for agricultural purposes. The present chapter discusses the effects of population increase and climate change upon food production, which will play a significant role in food security around the globe in near future.


Author(s):  
Supriya Tiwari ◽  
Barkha Vaish ◽  
Pooja Singh

Global food security is one if the major issues that needs utmost attention of the scientific community in near future. The growing food demand of the society is putting enormous pressure on the resources over which the food supply of the civilization depends. The two major components affecting the global food security are population and global climate change. The rate at which the population of the World is increasing, the food production needs to be doubled to meet the growing requirements. Consequences of global climate change not only reduce the productivity of major staple crops, but also cause destruction of the arable land that can be used for agricultural purposes. The present chapter discusses the effects of population increase and climate change upon food production, which will play a significant role in food security around the globe in near future.


Sign in / Sign up

Export Citation Format

Share Document