scholarly journals Case study of simultaneous observations of sporadic sodium layer, E-region field-aligned irregularities and sporadic E layer at low latitude of China

2017 ◽  
Vol 59 (6) ◽  
pp. 1559-1567 ◽  
Author(s):  
H.Y. Xie ◽  
B.Q. Ning ◽  
X.K. Zhao ◽  
L.H. Hu
2001 ◽  
Vol 19 (1) ◽  
pp. 59-69 ◽  
Author(s):  
H. Chandra ◽  
S. Sharma ◽  
C. V. Devasia ◽  
K. S. V. Subbarao ◽  
R. Sridharan ◽  
...  

Abstract. Rapid radio soundings were made over Ahmedabad, a low latitude station during the period 16–20 November 1998 to study the sporadic-E layer associated with the Leonid shower activity using the KEL Aerospace digital ionosonde. Hourly ionograms for the period 11 November to 24 November were also examined during the years from 1994 to 1998. A distinct increase in sporadic-E layer occurrence is noticed on 17, 18 and 19 November from 1996 to 1998. The diurnal variations  of  f0Es and fbEs also show significantly enhanced values for the morning hours of 18 and 19 November 1998. The ionograms clearly show strong sporadic-E reflections at times of peak shower activity with multiple traces in the altitude range of 100–140 km in few ionograms. Sporadic-E layers with multiple structures in altitude are also seen in some of the ionograms (quarter hourly) at Thumba, situated near the magnetic equator. Few of ionograms recorded at Kodaikanal, another equatorial station, also show sporadic- E reflections in spite of the transmitter power being significantly lower. These new results highlighting the effect of intense meteor showers in the equatorial and low latitude E-region are presented.Key words. Ionosphere (equatorial ionosphere) – Radio science (ionospheric physics)


1998 ◽  
Vol 25 (11) ◽  
pp. 1813-1816 ◽  
Author(s):  
Tadahiko Ogawa ◽  
Norihide Sekito ◽  
Kenrou Nozaki ◽  
Mamoru Yamamoto

2019 ◽  
Vol 5 (2) ◽  
pp. 30-34
Author(s):  
Ян Дали ◽  
Yang Dali ◽  
Чжан Теминь ◽  
Zhang Tiemin ◽  
Ван Цзихун ◽  
...  

We study the property of double sodium layer structures (DSLs) in the mesosphere and lower thermosphere (MLT) by a lidar at the low-latitude location of Haikou (20.0° N, 110.1° E), China. From April 2010 to December 2013, 21 DSLs were observed within a total of 377 observation days. DSLs were recorded at middle latitudes of Beijing and Wuhan, China, but were rarely observed at low latitudes. We analyze and discuss characteristics of DSLs such as time of occurrence, peak altitude, FWHM, duration time, etc. At the same time, the critical frequency foEs and the virtual height h'Es of the sporadic E layer Es were observed by an ionosonde over Danzhou (19.0° N, 109.3° E). We discuss such their characteristics as differences of time, differences of altitude compared to DSLs. We used an Nd:YAG laser pumped dye laser to generate the probing beam. The wavelength of the dye laser was set to 589 nm by a sodium fluorescence cell. The backscattered fluorescence photons from the sodium layer were collected by a telescope with the Φ1000 mm primary mirror.


2021 ◽  
Vol 13 (7) ◽  
pp. 1324
Author(s):  
Yong Wang ◽  
Periyadan T. Jayachandran ◽  
David R. Themens ◽  
Anthony M. McCaffrey ◽  
Qing-He Zhang ◽  
...  

The Sporadic-E (Es) layer is an often-observed phenomenon at high latitudes; however, our understanding of the polar cap Es layer is severely limited due to the scarce number of measurements. Here, the first comprehensive study of the polar cap Es layer associated with Global Positioning System (GPS) Total Electron Content (TEC) variations and scintillations is presented with multiple measurements at Resolute, Canada (Canadian Advanced Digital Ionosonde (CADI), Northward-looking face of Resolute Incoherent-Scatter Radar (RISR-N), and GPS receiver). According to the joint observations, the polar cap Es layer is a thin patch structure with variously high electron density, which gradually develops into the lower E region (~100 km) and horizontally extends >200 km. Moreover, the TEC variations produced by the polar cap Es layer are pulse-like enhancements with a general amplitude of ~0.5 TECu and are followed by smaller but rapid TEC perturbations. Furthermore, the possible scintillation effects likely associated with the polar cap Es layer are also discussed. As a consequence, the results widely expand our understanding on the polar cap Es layer, in particular on TEC variations.


2019 ◽  
Vol 5 (2) ◽  
pp. 28-32
Author(s):  
Ян Дали ◽  
Yang Dali ◽  
Чжан Теминь ◽  
Zhang Tiemin ◽  
Ван Цзихун ◽  
...  

We study the property of double sodium layer structures (DSLs) in the mesosphere and lower thermosphere (MLT) by a lidar at the low-latitude location of Haikou (20.0° N, 110.1° E), China. From April 2010 to December 2013, 21 DSLs were observed within a total of 377 observation days. DSLs were recorded at middle latitudes of Beijing and Wuhan, China, but were rarely observed at low latitudes. We analyze and discuss characteristics of DSLs such as time of occurrence, peak altitude, FWHM, duration time, etc. At the same time, the critical frequency foEs and the virtual height h'Es of the sporadic E layer Es were observed by an ionosonde over Danzhou (19.0° N, 109.3° E). We discuss such their characteristics as differences of time, differences of altitude compared to DSLs. We used an Nd:YAG laser pumped dye laser to generate the probing beam. The wavelength of the dye laser was set to 589 nm by a sodium fluorescence cell. The backscattered fluorescence photons from the sodium layer were collected by a telescope with the Φ1000 mm primary mirror.


2017 ◽  
Vol 122 (12) ◽  
pp. 12,517-12,533 ◽  
Author(s):  
J. Moro ◽  
L. C. A. Resende ◽  
C. M. Denardini ◽  
J. Xu ◽  
I. S. Batista ◽  
...  

2008 ◽  
Vol 26 (9) ◽  
pp. 2929-2936 ◽  
Author(s):  
K.-I. Oyama ◽  
K. Hibino ◽  
T. Abe ◽  
R. Pfaff ◽  
T. Yokoyama ◽  
...  

Abstract. The electron temperature (Te), electron density (Ne), and two components of the electric field were measured from the height of 90 km to 150 km by one of the sounding rockets launched during the SEEK-2 campaign. The rocket went through sporadic E layer (Es) at the height of 102 km–109 km during ascent and 99 km–108 km during decent, respectively. The energy density of thermal electrons calculated from Ne and Te shows the broad maximum in the height range of 100–110 km, and it decreases towards the lower and higher altitudes, which implies that a heat source exists in the height region of 100 km–110 km. A 3-D picture of Es, that was drawn by using Te, Ne, and the electric field data, corresponded to the computer simulation; the main structure of Es is projected to a higher altitude along the magnetic line of force, thus producing irregular structures of Te, Ne and electric field in higher altitude.


Sign in / Sign up

Export Citation Format

Share Document