Validating IRI-2016 for quiet-time F2-region peak electron density height (hmF2) at different latitudes during moderate solar activity

Author(s):  
J.O. Adeniyi ◽  
B.O. Adebesin ◽  
S.O. Ikubanni ◽  
S.J. Adebiyi ◽  
B.J. Adekoya ◽  
...  
2021 ◽  
Vol 13 (8) ◽  
pp. 1559
Author(s):  
Fabricio S. Prol ◽  
M. Mainul Hoque

A 3D-model approach has been developed to describe the electron density of the topside ionosphere and plasmasphere based on Global Navigation Satellite System (GNSS) measurements onboard low Earth orbit satellites. Electron density profiles derived from ionospheric Radio Occultation (RO) data are extrapolated to the upper ionosphere and plasmasphere based on a linear Vary-Chap function and Total Electron Content (TEC) measurements. A final update is then obtained by applying tomographic algorithms to the slant TEC measurements. Since the background specification is created with RO data, the proposed approach does not require using any external ionospheric/plasmaspheric model to adapt to the most recent data distributions. We assessed the model accuracy in 2013 and 2018 using independent TEC data, in situ electron density measurements, and ionosondes. A systematic better specification was obtained in comparison to NeQuick, with improvements around 15% in terms of electron density at 800 km, 26% at the top-most region (above 10,000 km) and 26% to 55% in terms of TEC, depending on the solar activity level. Our investigation shows that the developed model follows a known variation of electron density with respect to geographic/geomagnetic latitude, altitude, solar activity level, season, and local time, revealing the approach as a practical and useful tool for describing topside ionosphere and plasmasphere using satellite-based GNSS data.


2012 ◽  
Vol 30 (9) ◽  
pp. 1345-1360 ◽  
Author(s):  
V. Barabash ◽  
A. Osepian ◽  
P. Dalin ◽  
S. Kirkwood

Abstract. The theoretical PGI (Polar Geophysical Institute) model for the quiet lower ionosphere has been applied for computing the ionization rate and electron density profiles in the summer and winter D-region at solar zenith angles less than 80° and larger than 99° under steady state conditions. In order to minimize possible errors in estimation of ionization rates provided by solar electromagnetic radiation and to obtain the most exact values of electron density, each wavelength range of the solar spectrum has been divided into several intervals and the relations between the solar radiation intensity at these wavelengths and the solar activity index F10.7 have been incorporated into the model. Influence of minor neutral species (NO, H2O, O, O3) concentrations on the electron number density at different altitudes of the sunlit quiet D-region has been examined. The results demonstrate that at altitudes above 70 km, the modeled electron density is most sensitive to variations of nitric oxide concentration. Changes of water vapor concentration in the whole altitude range of the mesosphere influence the electron density only in the narrow height interval 73–85 km. The effect of the change of atomic oxygen and ozone concentration is the least significant and takes place only below 70 km. Model responses to changes of the solar zenith angle, solar activity (low–high) and season (summer–winter) have been considered. Modeled electron density profiles have been evaluated by comparison with experimental profiles available from the rocket measurements for the same conditions. It is demonstrated that the theoretical model for the quiet lower ionosphere is quite effective in describing variations in ionization rate, electron number density and effective recombination coefficient as functions of solar zenith angle, solar activity and season. The model may be used for solving inverse tasks, in particular, for estimations of nitric oxide concentration in the mesosphere.


2011 ◽  
Vol 4 (12) ◽  
pp. 2837-2850 ◽  
Author(s):  
A. J. Mannucci ◽  
C. O. Ao ◽  
X. Pi ◽  
B. A. Iijima

Abstract. We study the impact of large-scale ionospheric structure on the accuracy of radio occultation (RO) retrievals. We use a climatological model of the ionosphere as well as an ionospheric data assimilation model to compare quiet and geomagnetically disturbed conditions. The presence of ionospheric electron density gradients during disturbed conditions increases the physical separation of the two GPS frequencies as the GPS signal traverses the ionosphere and atmosphere. We analyze this effect in detail using ray-tracing and a full geophysical retrieval system. During quiet conditions, our results are similar to previously published studies. The impact of a major ionospheric storm is analyzed using data from the 30 October 2003 "Halloween" superstorm period. At 40 km altitude, the refractivity bias under disturbed conditions is approximately three times larger than quiet time. These results suggest the need for ionospheric monitoring as part of an RO-based climate observation strategy. We find that even during quiet conditions, the magnitude of retrieval bias depends critically on assumed ionospheric electron density structure, which may explain variations in previously published bias estimates that use a variety of assumptions regarding large scale ionospheric structure. We quantify the impact of spacecraft orbit altitude on the magnitude of bending angle and retrieval error. Satellites in higher altitude orbits (700+ km) tend to have lower residual biases due to the tendency of the residual bending to cancel between the top and bottomside ionosphere. Another factor affecting accuracy is the commonly-used assumption that refractive index is unity at the receiver. We conclude with remarks on the implications of this study for long-term climate monitoring using RO.


2019 ◽  
Vol 5 (2) ◽  
pp. 113-115
Author(s):  
Галина Кушнаренко ◽  
Galina Kushnarenko ◽  
Ольга Яковлева ◽  
Olga Yakovleva ◽  
Галина Кузнецова ◽  
...  

We analyze the influence of geomagnetic disturbances on the electron density Ne at Norilsk ionospheric station (69° N; 88° E) at F1-layer heights (120–200 km). For the analysis, we have selected 25 moderate and weak geomagnetic disturbances for two seasons — spring and fall — of 2003–2014. Using the Ne values obtained from measurements made with the Norilsk digisonde during this period, we analyze Ne variations during geomagnetic disturbances in spring and fall for a long period of time. We determine the effect of spring-fall asymmetry occurring in all solar activity phases and manifesting itself in a significant decrease in the electron density during the main phase of fall storms at all heights in comparison with quiet days: up to 2.6 times at a height of 200 km and slightly less at lower heights. This phenomenon is not observed during spring disturbances: Ne variations are much weaker.


Sign in / Sign up

Export Citation Format

Share Document