A two-equation local-correlation-based laminar-turbulent transition modeling scheme for external aerodynamics

2020 ◽  
Vol 106 ◽  
pp. 106128 ◽  
Author(s):  
Kang Liu ◽  
Yue Wang ◽  
Wen-Ping Song ◽  
Zhong-Hua Han
Author(s):  
Mahmoud L. Mansour ◽  
S. Murthy Konan ◽  
Shraman Goswami

Although turbo-machinery main stream flows are predominantly turbulent, the low pressure turbine airfoil surface boundary layer may be either laminar or turbulent. When boundary layer flow is laminar and passes through a zone of adverse pressure gradient, bypass or separation transition can occur via the Tollmien-Schlichting or Kelvin-Helmholtz instabilities. As the gas turbine’s low pressure turbine operating condition changes from sea level take-off to the altitude cruise, Reynolds number is significantly lowered and the turbine’s performance loss increases significantly. This fall-off in performance characteristic is known as lapse rate. Ability to accurately model such phenomenon is a prerequisite for reliable loss prediction and essential for improving low pressure turbine designs. Establishing such capability requires the validation and evaluation of existing low Reynolds number turbulence models, with laminar-turbulent transition modeling capability, against test cases with measured data. This paper summarizes the results of evaluating and validating two 3D viscous “RANS” Reynolds-Averaged Navier-Stokes programs for two test cases with test data. The first test case is the ERCOFTAC’ flat plate with and without pressure gradient, and the second is a Honeywell three-and-half-stage low pressure turbine with available test data at high and low Reynolds number operations. In addition to evaluating the CFD codes against test data, the flat plate test cases were used to establish the meshing and modeling best practice for each code before performing the validation for the Honeywell multistage low pressure turbine. The RANS CFD programs are Numeca’s Fine Turbo and ANSYS/CFX. Numeca’s Fine Turbo employs a two-equation K-ε turbulence model without laminar-turbulent transition modeling capability and the one-equation Spallart-Allmaras turbulence model with laminar-turbulent transition modeling capability. The ANSYS/CFX, on the other hand, employs a two-equation K-ω turbulence model (AKA SST or shear stress transport) with ability to model laminar-turbulent transition. Predictions of the CFD codes are compared with test data and the impact of modeling the laminar-turbulent transition on the prediction accuracy is assessed and presented. Both CFD codes are commercially available and the evaluation presented here is based on users’ prospective that targets the applicability of such predictive tools in the turbine design process.


Author(s):  
Luiz Tobaldini Neto ◽  
Marcos de Mattos Pimenta ◽  
Guilherme Araujo Lima da Silva

The present article discusses some of the transition modeling strategies typically applied by the industry. Transition effects on the heat transfer characteristics and calculation for airfoil anti-ice protection systems build the framework of the developments of interest. Results of the studied models are presented for flat plate data taken from the ERCOFTAC experiments.


Author(s):  
Jared A. Carne ◽  
James G. Coder

Predictions of unsteady boundary layer transition are performed on a four-bladed rotor in axial inflow using a computational fluid dynamics approach. The configuration is based on experiments performed at the German Aerospace Center (DLR) in the 1.6-m × 3.4-m wind tunnel in the rotor test facility (RTG). Simulations are performed using the NASA OVERFLOW 2.3 solver with hybrid RANS/LES and laminar turbulent transition modeling. Solutions are based on a hover tip Mach number of 0.143 with prescribed cyclic pitching conditions. Computational methods and grid generation are described. The rotor flow field is analyzed, and the effect of transition modeling on unsteady boundary layer transition prediction is assessed. Laminar-turbulent transition predictions and rotor performance are compared to experimental measurements obtained at the DLR RTG. A study of sensitivity was performed on freestream turbulence intensity to investigate its effect on predicted rotor transition.


2016 ◽  
Vol 47 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Mikhail Aleksandrovich Pugach ◽  
Alexander Aleksandrovich Ryzhov ◽  
Alexander Vitalievich Fedorov

Sign in / Sign up

Export Citation Format

Share Document