A 6-DOF sliding mode fault tolerant control solution for in-orbit autonomous rendezvous

2021 ◽  
Vol 118 ◽  
pp. 107050
Author(s):  
David Henry ◽  
Jazmin Zenteno-Torres ◽  
Jérôme Cieslak ◽  
Alejandra Ferreira De Loza ◽  
Jorge Dávila
2021 ◽  
pp. 002029402110286
Author(s):  
Pu Yang ◽  
Peng Liu ◽  
ChenWan Wen ◽  
Huilin Geng

This paper focuses on fast terminal sliding mode fault-tolerant control for a class of n-order nonlinear systems. Firstly, when the actuator fault occurs, the extended state observer (ESO) is used to estimate the lumped uncertainty and its derivative of the system, so that the fault boundary is not needed to know. The convergence of ESO is proved theoretically. Secondly, a new type of fast terminal sliding surface is designed to achieve global fast convergence, non-singular control law and chattering reduction, and the Lyapunov stability criterion is used to prove that the system states converge to the origin of the sliding mode surface in finite time, which ensures the stability of the closed-loop system. Finally, the effectiveness and superiority of the proposed algorithm are verified by two simulation experiments of different order systems.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 643 ◽  
Author(s):  
Juan Tan ◽  
Yonghua Fan ◽  
Pengpeng Yan ◽  
Chun Wang ◽  
Hao Feng

The unmanned aerial vehicle (UAV) has been developing rapidly recently, and the safety and the reliability of the UAV are significant to the mission execution and the life of UAV. Sensor and actuator failures of a UAV are one of the most common malfunctions, threating the safety and life of the UAV. Fault-tolerant control technology is an effective method to improve the reliability and safety of UAV, which also contributes to vehicle health management (VHM). This paper deals with the sliding mode fault-tolerant control of the UAV, considering the failures of sensor and actuator. Firstly, a terminal sliding surface is designed to ensure the state of the system on the sliding mode surface throughout the control process based on the simplified coupling dynamic model. Then, the sliding mode control (SMC) method combined with the RBF neural network algorithm is used to design the parameters of the sliding mode controller, and with this, the efficiency of the design process is improved and system chattering is minimized. Finally, the Simulink simulations are carried out using a fault tolerance controller under the conditions where accelerometer sensor, gyroscope sensor or actuator failures is assumed. The results show that the proposed control strategy is quite an effective method for the control of UAVs with accelerometer sensor, gyroscope sensor or actuator failures.


Author(s):  
Jun Zhou ◽  
Jing Chang ◽  
Zongyi Guo

The paper describes the design of a fault-tolerant control scheme for an uncertain model of a hypersonic reentry vehicle subject to actuator faults. In order to improve superior transient performances for state tracking, the proposed method relies on a back-stepping sliding mode controller combined with an adaptive disturbance observer and a reference vector generator. This structure allows for a faster response and reduces the overshoots compared to linear conventional disturbance observers based sliding mode controller. Robust stability and performance guarantees of the overall closed-loop system are obtained using Lyapunov theory. Finally, numerical simulations results illustrate the effectiveness of the proposed technique.


Sign in / Sign up

Export Citation Format

Share Document