Learning Prediction-Correction Guidance for Impact Time Control

2021 ◽  
pp. 107187
Author(s):  
Zichao Liu ◽  
Jiang Wang ◽  
Shaoming He ◽  
Hyo-Sang Shin ◽  
Antonios Tsourdos
Keyword(s):  
Author(s):  
Jun-Yong Lee ◽  
Hyeong-Guen Kim ◽  
H Jin Kim

This article proposes an impact-time-control guidance law that can keep a non-maneuvering moving target in the seeker’s field of view (FOV). For a moving target, the missile calculates a predicted intercept point (PIP), designates the PIP as a new virtual stationary target, and flies to the PIP at the desired impact time. The main contribution of the article is that the guidance law is designed to always lock onto the moving target by adjusting the guidance gain. The guidance law for the purpose is based on the backstepping control technique and designed to regulate the defined impact time error. In this procedure, the desired look angle, which is a virtual control, is designed not to violate the FOV limit, and the actual look angle of the missile is kept within the FOV by tracking the desired look angle. To validate the performance of the guidance law, numerical simulation is conducted with different impact times. The result shows that the proposed guidance law intercepts the moving target at the desired impact time maintaining the target lock-on condition.


2016 ◽  
Vol 52 (6) ◽  
pp. 3008-3023 ◽  
Author(s):  
Mark Snyder ◽  
Zhihua Qu ◽  
Richard Hull ◽  
Richard Prazenica

2020 ◽  
Vol 33 (11) ◽  
pp. 2946-2958
Author(s):  
Yang TANG ◽  
Xiaoping ZHU ◽  
Zhou ZHOU ◽  
Fei YAN

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Sijiang Chang ◽  
Shengfu Chen

In a bid to take advantage of natural characteristics of the proportional navigation guidance (PNG) in practical engineering, the PNG-based impact time control guidance (ITCG) continues to be a popular alternative for achieving the desired impact time of a missile. For most such ITCG, the performance is dependent on the accuracy of the time-to-go estimation. Along the lines of the development of PNG-based ITCG in earlier studies, a nonsingular ITCG is proposed on the basis of nonlinear formulations. It is demonstrated that, by theoretical analysis and numerical simulation, this proposed ITCG is shown to be advantageous in certain circumstances. By deriving a novel additional acceleration command, the proposed law is of lower dependence on time-to-go estimate and is capable of eliminating some singularities, leading to wider adjustable range of the desired impact time and better adaptability to more conditions. This research is expected to be supplementary to those presented in the current research literature.


Sign in / Sign up

Export Citation Format

Share Document