An impact-time-control guidance law for cooperative attack of multiple missiles

Author(s):  
Qing Zhu ◽  
Qianyu Lin ◽  
Xiaoli Wang ◽  
Zeran Li
Author(s):  
D-K Sang ◽  
M-J Tahk

The impact time control guidance (ITCG) method, which has been proposed recently, can be applied successfully to a salvo attack of multiple missiles. Compared to the proportional navigation guidance law, this guidance method makes additional manoeuvres to synchronize the impact times. However, such manoeuvres do not consider the manoeuvrability and the seeker's field-of-view (FOV) of a missile and may cause the target to move out of the missile seeker's FOV; maintaining the seeker lock-on condition during the engagement is critical for missile guidance. To solve this problem, two methods are presented in this article: one is based on the calculation of minimum and maximum flight times considering the missile's manoeuvring limit and the seeker's FOV limit to check the available impact time. The other is based on guidance law switching logic that keeps the target look angle of the seeker constant. These methods can provide the boundary limit of the impact time of the salvo attack and prevent the lock-on failure because of the seeker's FOV limit of the missile during the homing phase when the ITCG is used. This method was applied to the case of a time critical salvo-attack of multiple missiles, which have manoeuvring limit and the seeker's FOV limit, and desired results were obtained.


Author(s):  
Jun-Yong Lee ◽  
Hyeong-Guen Kim ◽  
H Jin Kim

This article proposes an impact-time-control guidance law that can keep a non-maneuvering moving target in the seeker’s field of view (FOV). For a moving target, the missile calculates a predicted intercept point (PIP), designates the PIP as a new virtual stationary target, and flies to the PIP at the desired impact time. The main contribution of the article is that the guidance law is designed to always lock onto the moving target by adjusting the guidance gain. The guidance law for the purpose is based on the backstepping control technique and designed to regulate the defined impact time error. In this procedure, the desired look angle, which is a virtual control, is designed not to violate the FOV limit, and the actual look angle of the missile is kept within the FOV by tracking the desired look angle. To validate the performance of the guidance law, numerical simulation is conducted with different impact times. The result shows that the proposed guidance law intercepts the moving target at the desired impact time maintaining the target lock-on condition.


2020 ◽  
Vol 33 (11) ◽  
pp. 2946-2958
Author(s):  
Yang TANG ◽  
Xiaoping ZHU ◽  
Zhou ZHOU ◽  
Fei YAN

Author(s):  
Jie Zeng ◽  
◽  
Lihua Dou ◽  
Bin Xin

In this article, a guidance problem for cooperative salvo attack of multiple missiles against a single stationary target is investigated. The proposed guidance law combines the well-known PNG law and cooperative acceleration command, which is based on the feedback of state error between the current missile and the mean value of participant missiles. The state variable in this paper is used as the approximate calculation of time-to-go. The cooperative acceleration command is designed to adjust the flight path and impact time, which leads the multi-missiles to hit the common target simultaneously. During the engagement, the velocities of missiles are not changed and presetting impact time is not needed. Simulation results show the effectiveness of the proposed guidance law.


2014 ◽  
Vol 39 ◽  
pp. 361-369 ◽  
Author(s):  
Youan Zhang ◽  
Xingliang Wang ◽  
Huali Wu

Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 231
Author(s):  
Zhanyuan Jiang ◽  
Jianquan Ge ◽  
Qiangqiang Xu ◽  
Tao Yang

The paper proposes a two-dimensional impact time control cooperative guidance law under constant velocity and a three-dimensional impact time control cooperative guidance law under time-varying velocity, which can both improve the penetration ability and combat effectiveness of multi-missile systems and adapt to the complex and variable future warfare. First, a more accurate time-to-go estimation method is proposed, and based on which a modified proportional navigational guidance (MPNG) law with impact time constraint is designed in this paper, which is also effective when the initial leading angle is zero. Second, adopting cooperative guidance architecture with centralized coordination, using the MPNG law as the local guidance, and the desired impact time as the coordination variables, a two-dimensional impact time control cooperative guidance law under constant velocity is designed. Finally, a method of solving the expression of velocity is derived, and the analytic function of velocity with respect to time is given, a three-dimensional impact time control cooperative guidance law under time-varying velocity based on desired impact time is designed. Numerical simulation results verify the feasibility and applicability of the methods.


Sign in / Sign up

Export Citation Format

Share Document