adjustable range
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 11)

H-INDEX

6
(FIVE YEARS 0)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7441
Author(s):  
Ruixian Yu ◽  
Chengmin Chen ◽  
Guodong Wang ◽  
Guangxia Liu ◽  
Shouzhi Wang ◽  
...  

Based on the actual hot zone structure of an AlN crystal growth resistance furnace, the global numerical simulation on the heat transfer process in the AlN crystal growth was performed. The influence of different heater structures on the growth of AlN crystals was investigated. It was found that the top heater can effectively reduce the axial temperature gradient, and the side heater 2 has a similar effect on the axial gradient, but the effect feedback is slightly weaker. The axial temperature gradient tends to increase when the bottom heater is added to the furnace, and the adjustable range of the axial temperature gradient of the side 1 heater + bottom heater mode is the largest. Our work will provide important reference values for AlN crystal growth by the resistance method.


Author(s):  
Rui Li ◽  
Di Wang ◽  
Xinyan Li ◽  
Changrong Liao ◽  
Ping-an Yang ◽  
...  

Abstract To optimize the online friction coefficient adjustment, it is necessary to study the parameter change features of the magneto-sensitive polymer and its influence on the friction characteristics under magnetic field. A series of magnetorheological elastomers (MREs) with different initial surface roughness were prepared, and a sliding friction platform with MRE - copper block pair was built to carry out magnetic-controlled friction characteristic experiment. Results show that the sliding friction coefficient of MRE decreases with the increase of the magnetic field, but the degree of reduction is quite different under different initial surface roughness and elastic modulus. When the initial surface roughness of MRE is between 0.5 - 2.5 μm and the carbonyl iron particles (CIPs) volume fraction is between 10% - 15%, its magnetic-controlled friction coefficient has the largest reduced value of 22.75%. Moreover, features of elastic modulus and surface topography under magnetic field were tested and analyzed. By combining with the single peak contact model and the friction binomial law, the relationship between the surface roughness and elastic modulus of MREs and the sliding friction force is deduced, and it is proved that the friction coefficient is affected by the coupling effect of surface roughness and elastic modulus. The magnetic-controlled elastic modulus is the key factor, which determines the overall downward trend of the friction coefficient of MREs. Magnetic-controlled surface roughness also plays an important role in the adjustable range of friction coefficient, and reducing the initial surface roughness can increase the magnetic-controlled friction coefficient adjustable range.


2021 ◽  
pp. 434-442
Author(s):  
Shuo Zhang ◽  
Qingyu Chen ◽  
Jinyi Liu ◽  
Y Chen ◽  
Jun Chen ◽  
...  

Vegetable industry occupies a significant position in the world agricultural production, China has been the largest vegetable producing country in the world. However, the mechanization of vegetable production is still in the initial stage. There are many problems such as complex environment, non-uniform agronomy, various kinds of agricultural machinery etc. In order to meet the varied requirements of vegetable field work, in this paper, a new type of high-efficiency vegetable field operation power equipment was developed by adopting the idea of "frame-type", and the key components are developed. They include ground gap adjusting mechanism, wheel spacing adjusting mechanism, inter-axle hitch mechanism, the rear hitch mechanism and frame. The vibration modal analysis and stiffness analysis of the frame are carried out by ANSYS, which proves that the frame design is reasonable and meets the use requirements. Finally, a prototype was made and field experiments were carried out. The results showed that the maximum running speed of the multifunctional vegetable field machine was 16 km/h, the maximum operating speed was 8 km/h, the maximum gradient was 20, and the adjustable range of ground clearance was 400~800 mm. The adjustable range of wheel spacing was 1600-2000 mm.


2021 ◽  
Author(s):  
Rui Li ◽  
Di Wang ◽  
Xinyan Li ◽  
Ping-an Yang ◽  
Haibo Ruan ◽  
...  

Abstract To optimize the online friction coefficient adjustment, it is necessary to study the parameter change features of the magneto-sensitive polymer and its influence on the friction characteristics under magnetic field. A series of isotropic magnetorheological elastomers (MREs) with different initial surface roughness were prepared, and a sliding friction platform with MRE - copper block pair was built to carry out magnetic-controlled friction characteristic experiment. Results show that the sliding friction coefficient of MRE decreases with the increase of the magnetic field, but the degree of reduction is quite different under different initial surface roughness and elastic modulus. When the initial surface roughness of MRE is between 0.5 - 2.5 μm and the ferromagnetic particles volume fraction is between 10% - 15%, its magnetic-controlled friction coefficient has the largest reduced value of 22.75%. Moreover, features of elastic modulus and surface topography under magnetic field were tested and analyzed. By combining with the single peak contact model and the friction binomial law, the relationship between the surface roughness and elastic modulus of MREs and the sliding friction force is deduced, and it is proved that the friction coefficient is affected by the coupling effect of surface roughness and elastic modulus. The magnetic-controlled elastic modulus is the key factor, which determines the overall downward trend of the friction coefficient of MREs. Magnetic-controlled surface roughness also plays an important role in the adjustable range of friction coefficient, and reducing the initial surface roughness can increase the magnetic-controlled friction coefficient adjustable range.


2020 ◽  
Vol 25 (3) ◽  

The developed IPC-CorrMeter software is intended for studying corrosion of metals, alloys, and coatings and estimating the efficiency of anti-corrosion protection by emulating the operation of a “Corrosimeter” device in potentiostats of the IPC series that allows implementing well-known and reliable corrosion-electrochemical methods, such as linear polarization resistance, zero resistance amperometry, and potentiometry in the existing serial IPC potentiostats. The advantages of the new software include: a possibility of continuous automatic use of these methods in the study of corrosion processes, obtaining results almost in real time mode, high sensitivity and a wide adjustable range of measurements of the rates of general and pitting corrosion (from 1 nm to tens of mm per year), no absence of any restrictions regarding the RAM size of the device. Quantitative dependences of the general and pitting corrosion rate of steel St3 in water are obtained in the presence of the industrial СARTEС-28B corrosion inhibitor for hydraulic testing of mud pumps. They confirm the reliability, accuracy, high sensitivity, and validity of the IPC-CorrMeter software and equipment for researching metal corrosion and allow evaluating the efficiency of anti-corrosion protection agents, as well as the high efficiency of this inhibitor.


2020 ◽  
Vol 61 (2) ◽  
pp. 305-314
Author(s):  
Zhuohuai Guan ◽  
Zhou Zhang ◽  
Tao Jiang ◽  
Ying Li ◽  
Chongyou Wu ◽  
...  

Aiming at real time rotation speed control of threshing drum and cleaning fan for combine harvester, a stepless speed regulation mechanism was developed. Test show that the adjustable range of fan was 600~1150 r/min, average adjustment speed was 9.2 r/s, the absolute error of stable speed was less than 0.72 r/min. The average speed response time was 1.33s, the overshoot was less than 8 r/s. The adjustable range of the drum was 700~1100 r/min and the average adjustment speed was 2.1 r/s. The absolute error of stable speed did not exceed 0.62 r/min, and the maximum relative deviation was 0.38%


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1029
Author(s):  
Xinghui Yan ◽  
Minchi Kuang ◽  
Jihong Zhu

To provide a feasible solution for a variable speed unmanned aerial vehicle (UAV) to home on a target with impact time and angle constraints, this paper presents a novel geometry-based guidance law composed of trajectory reshaping and tracking. A trajectory generation process using Bezier curves is introduced to satisfy the impact time and angle constraints under time-varying speed. The impact angle is satisfied by driving the UAV along a specified ending line. The impact time is satisfied by controlling the trajectory length, which is realized through adjusting one Bezier curve end point along the ending line. The adjustable range of this end point, along with the maximum trajectory curvature, is analyzed to ensure that the trajectory is flyable. Guidance command is generated using inverse dynamics. Numerical simulations under various scenarios are demonstrated to illustrate the performance and validate the effectiveness of the proposed method.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Sijiang Chang ◽  
Shengfu Chen

In a bid to take advantage of natural characteristics of the proportional navigation guidance (PNG) in practical engineering, the PNG-based impact time control guidance (ITCG) continues to be a popular alternative for achieving the desired impact time of a missile. For most such ITCG, the performance is dependent on the accuracy of the time-to-go estimation. Along the lines of the development of PNG-based ITCG in earlier studies, a nonsingular ITCG is proposed on the basis of nonlinear formulations. It is demonstrated that, by theoretical analysis and numerical simulation, this proposed ITCG is shown to be advantageous in certain circumstances. By deriving a novel additional acceleration command, the proposed law is of lower dependence on time-to-go estimate and is capable of eliminating some singularities, leading to wider adjustable range of the desired impact time and better adaptability to more conditions. This research is expected to be supplementary to those presented in the current research literature.


Author(s):  
Susana V. Awad ◽  
Joaquin F Orozco ◽  
Fredy E Hoyos

<span>In this paper is presented the mathematical model, design and construction of a prototype of a  vibration frequency meter in an adjustable range of 2 Hz to 30 Hz; The experimental results and their analysis are also presented, making a comparative evaluation with the theoretical model. The device is based on the principle of resonance applied in an inverted magnetic pendulum whose natural frequency can be modified by variations of physical parameters. The oscillation of the pendulum is recorded detecting variations in the magnetic field using hall effect sensors; the data recorded with a microprocessor is analyzed and the results are simultaneously plotted in a computer interface. The data obtained were processed to be plotted in the frequency domain, facilitating its analysis. It was proved that the prototype can be used as a frequency meter and that the adjustable character of the device works according to the mathematical model. Finally, The effect of the friction force was studied, it was concluded that the friction force affects the measurement after a considerable period of time of oscillation, but not in the first moments.</span>


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4149
Author(s):  
Xiang Li ◽  
Rui Li ◽  
Chunge Ju ◽  
Bo Hou ◽  
Qi Wei ◽  
...  

Micromachined gyroscopes require high voltage (HV) for actuation and detection to improve its precision, but the deviation of the HV caused by temperature fluctuations will degrade the sensor’s performance. In this paper, a high-voltage temperature-insensitive charge pump is proposed. Without adopting BCD (bipolar-CMOS-DMOS) technology, the output voltage can be boosted over the breakdown voltage of n-well/substrate diode using triple-well NMOS (n-type metal-oxide-semiconductor) transistors. By controlling the pumping clock’s amplitude continuously, closed-loop regulation is realized to reduce the output voltage’s sensitivity to temperature changes. Besides, the output level is programmable linearly in a large range by changing the reference voltage. The whole circuit has been fabricated in a 0.18- μ m standard CMOS (complementary metal-oxide-semiconductor) process with a total area of 2.53 mm 2 . Measurements indicate that its output voltage has a linear adjustable range from around 13 V to 16.95 V, and temperature tests show that the maximum variations of the output voltage at − 40 ∼ 80 ∘ C are less than 1.1%.


Sign in / Sign up

Export Citation Format

Share Document