Impact Time Control Guidance with Finite-Time Convergence Based on Pure Proportional Navigation

Author(s):  
Jinrae Kim ◽  
Youdan Kim
2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Sijiang Chang ◽  
Shengfu Chen

In a bid to take advantage of natural characteristics of the proportional navigation guidance (PNG) in practical engineering, the PNG-based impact time control guidance (ITCG) continues to be a popular alternative for achieving the desired impact time of a missile. For most such ITCG, the performance is dependent on the accuracy of the time-to-go estimation. Along the lines of the development of PNG-based ITCG in earlier studies, a nonsingular ITCG is proposed on the basis of nonlinear formulations. It is demonstrated that, by theoretical analysis and numerical simulation, this proposed ITCG is shown to be advantageous in certain circumstances. By deriving a novel additional acceleration command, the proposed law is of lower dependence on time-to-go estimate and is capable of eliminating some singularities, leading to wider adjustable range of the desired impact time and better adaptability to more conditions. This research is expected to be supplementary to those presented in the current research literature.


Author(s):  
Vo Anh Tuan ◽  
Hee-Jun Kang

In this study, a new finite time control method is suggested for robotic manipulators based on nonsingular fast terminal sliding variables and the adaptive super-twisting method. First, to avoid the singularity drawback and achieve the finite time convergence of positional errors with a fast transient response rate, nonsingular fast terminal sliding variables are constructed in the position errors' state space. Next, adaptive tuning laws based on the super-twisting scheme are presented for the switching control law of terminal sliding mode control (TSMC) so that a continuous control law is extended to reject the effects of chattering behavior. Finally, a new finite time control method ensures that sliding motion will take place, regardless of the effects of the perturbations and uncertainties on the robot system. Accordingly, the stabilization and robustness of the suggested control system can be guaranteed with high-precision performance. The robustness issue and the finite time convergence of the suggested system are totally confirmed by the Lyapunov stability principle. In simulation studies, the experimental results exhibit the effectiveness and viability of our proposed scheme for joint position tracking control of a 3DOF PUMA560 robot.


2020 ◽  
Vol 43 (5) ◽  
pp. 955-966 ◽  
Author(s):  
Yuheng Guo ◽  
Xiang Li ◽  
Houjun Zhang ◽  
Ming Cai ◽  
Feng He

Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 231
Author(s):  
Zhanyuan Jiang ◽  
Jianquan Ge ◽  
Qiangqiang Xu ◽  
Tao Yang

The paper proposes a two-dimensional impact time control cooperative guidance law under constant velocity and a three-dimensional impact time control cooperative guidance law under time-varying velocity, which can both improve the penetration ability and combat effectiveness of multi-missile systems and adapt to the complex and variable future warfare. First, a more accurate time-to-go estimation method is proposed, and based on which a modified proportional navigational guidance (MPNG) law with impact time constraint is designed in this paper, which is also effective when the initial leading angle is zero. Second, adopting cooperative guidance architecture with centralized coordination, using the MPNG law as the local guidance, and the desired impact time as the coordination variables, a two-dimensional impact time control cooperative guidance law under constant velocity is designed. Finally, a method of solving the expression of velocity is derived, and the analytic function of velocity with respect to time is given, a three-dimensional impact time control cooperative guidance law under time-varying velocity based on desired impact time is designed. Numerical simulation results verify the feasibility and applicability of the methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-10 ◽  
Author(s):  
Meiling Tao ◽  
Xiongxiong He ◽  
Shuzong Xie ◽  
Qiang Chen

In this article, a singularity-free terminal sliding mode (SFTSM) control scheme based on the radial basis function neural network (RBFNN) is proposed for the quadrotor unmanned aerial vehicles (QUAVs) under the presence of inertia uncertainties and external disturbances. Firstly, a singularity-free terminal sliding mode surface (SFTSMS) is constructed to achieve the finite-time convergence without any piecewise continuous function. Then, the adaptive finite-time control is designed with an auxiliary function to avoid the singularity in the error-related inverse matrix. Moreover, the RBFNN and extended state observer (ESO) are introduced to estimate the unknown disturbances, respectively, such that prior knowledge on system model uncertainties is not required for designing attitude controllers. Finally, the attitude and angular velocity errors are finite-time uniformly ultimately bounded (FTUUB), and numerical simulations illustrated the satisfactory performance of the designed control scheme.


2019 ◽  
Vol 2019 ◽  
pp. 1-5 ◽  
Author(s):  
Chun Duan ◽  
Di Wu

For the DC-DC Boost converter system, this paper employs the finite-time control technique to design a new nonlinear fast voltage regulation control algorithm. Compared with the existing algorithm, the main advantage of the proposed algorithm lies in the fact that it can offer a fast convergent rate, i.e., finite-time convergence. Based on the average state space model of Boost converter system and finite-time control theory, rigorous stability analysis showed that the output voltage converges to the reference voltage in a finite time. Simulation results demonstrate the efficiency of the proposed method. Compared with PI control algorithm, it is shown that the proposed algorithm has a faster regulation performance and stronger robust performance on load-variation.


2021 ◽  
Author(s):  
Lei Cui ◽  
Nan Jin

Abstract This paper proposes a new extended stateobserver-based sliding mode control strategy with prescribed finite-time convergence. Firstly, a novel prescribed finite-time extended state observer is designed, which estimates the disturbance accurately within a prescribed finite time and effectively solves peaking value problem. Secondly, a new type of second-order prescribed finite-time sliding mode controller is designed to ensure system states converge within a prescribed finite time. Then, the proposed control strategy is applied to the design of partial integrated guidance and control with two-loop controller structure. Finally, the validity of the proposed methodology is verified through numerical simulation.


2020 ◽  
Vol 33 (3) ◽  
pp. 956-964
Author(s):  
Guoxin SUN ◽  
Qiuqiu WEN ◽  
Zhiqiang XU ◽  
Qunli XIA

2012 ◽  
Vol 157-158 ◽  
pp. 847-851
Author(s):  
Shu Nan Wu ◽  
Zhao Wei Sun ◽  
Xian De Wu

The attitude maneuver control of flexible spacecraft with finite-time convergence is investigated in this paper. Two terminal sliding mode controllers are proposed to achieve the finite-time control, which guarantee the convergence of attitude maneuver errors in finite time. The singularity problem associated with the terminal sliding mode control is solved by employing a new sliding variable. Numerical simulations are finally provided to illustrate the performance of the proposed controllers.


Sign in / Sign up

Export Citation Format

Share Document