Apolipoprotein A-I mimetic peptide inhibits atherosclerosis by increasing the tetrahydrobiopterin through regulating GTP-cyclohydrolase 1 and reducing uncoupled endothelial nitric oxide synthase activity

Author(s):  
Da-Sheng Ning ◽  
Jian Ma ◽  
Yue-Ming Peng ◽  
Yan Li ◽  
Ya-Ting Chen ◽  
...  
Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Shuangxi Wang ◽  
Jian Xu ◽  
Ping Song ◽  
Yong Wu ◽  
Junhua Zhang ◽  
...  

Objective: GTP cyclohydrolase 1 (GTPCH1) is the rate-limiting enzyme in de novo synthesis of tetrahydrobiopterin (BH4), an essential cofactor for endothelial nitric oxide synthase (eNOS) dictating at least partly, the balance of nitric oxide (NO) and superoxide (O 2 .− ) produced by this enzyme. The aim of this study is to determine the effects of acute inhibition of GTPCH1 on BH4, eNOS function, and blood pressure. Methods: The biopterin content was detected by HPLC. O 2 .− and NO productions were assayed by using DHE and DAF fluorescence respectively. The vessel relaxation was assayed by organ chamber. The blood pressure in wild-type (WT) or eNOS −/− mice was determined by a carotid catheter method. Results: Exposure of bovine or mouse aortic endothelial cells to GTPCH1 inhibitors (10 mM DAHP or 1 mM NAS) for 24 hours or GTPCH1 siRNA transfection significantly reduced both BH4 and NO levels, but increased O 2 .− levels. This increase was abolished by 10 μM L-sepiapterin (BH4 precursor) or 1 mM L-NAME (non-selective NOS inhibitor). Incubation of isolated WT mice aortas with DAHP or NAS for 24 hours impaired acetylcholine-induced endothelium-dependent relaxation, but not endothelium-independent relaxation. Aortas from GTPCH1 siRNA-injected mice, but not their control-siRNA injected mice, also exhibited impaired endothelium-dependent relaxation. Furthermore, GT-PCH1 siRNA injection in mice reduced BH4 levels in aortas, associated with increased aortic levels of O 2 .− , 3-nitrotyrosine, and adhesion molecules (ICAM1 and VCAM1). In addition, an elevated mean, systolic, and diastolic blood pressure was induced by GTPCH1 siRNA injection in vivo , but not control siRNA (mean blood pressure: 114.28±4.48 vs . 136.81±2.45 mmHg) in WT mice. GTPCH1 siRNA was unable to elicit the similar effects in eNOS −/− mice, including increased oxidative stress (O 2 .− , 3-nitrotyrosine, ICAM1, VCAM1) and blood pressure. Finally, sepiapterin supplementation, which had no effect on high blood pressure in eNOS −/− mice, partially reversed GTPCH1 siRNA-induced elevation of systemic blood pressure in WT mice. Conclusion: GTPCH1 via BH4 maintains normal blood pressure and endothelial function by preserving eNOS-dependent NO biosynthesis. This research has received full or partial funding support from the American Heart Association, AHA South Central Affiliate (Arkansas, New Mexico, Oklahoma & Texas).


2011 ◽  
Vol 210 (3) ◽  
pp. 271-284 ◽  
Author(s):  
Ruslan Rafikov ◽  
Fabio V Fonseca ◽  
Sanjiv Kumar ◽  
Daniel Pardo ◽  
Charles Darragh ◽  
...  

Rather than being a constitutive enzyme as was first suggested, endothelial nitric oxide synthase (eNOS) is dynamically regulated at the transcriptional, posttranscriptional, and posttranslational levels. This review will focus on how changes in eNOS function are conferred by various posttranslational modifications. The latest knowledge regarding eNOS targeting to the plasma membrane will be discussed as the role of protein phosphorylation as a modulator of catalytic activity. Furthermore, new data are presented that provide novel insights into how disruption of the eNOS dimer prevents eNOS uncoupling and the production of superoxide under conditions of elevated oxidative stress and identifies a novel regulatory region we have termed the ‘flexible arm’.


2006 ◽  
Vol 398 (2) ◽  
pp. 279-288 ◽  
Author(s):  
Jacqueline M. Cale ◽  
Ian M. Bird

eNOS (endothelial nitric oxide synthase) activity is post-translationally regulated in a complex fashion by acylation, protein–protein interactions, intracellular trafficking and phosphorylation, among others. Signalling pathways that regulate eNOS activity include phosphoinositide 3-kinase/Akt, cyclic nucleotide-dependent kinases [PKA (protein kinase A) and PKG], PKC, as well as ERKs (extracellular-signal-regulated kinases). The role of ERKs in eNOS activation remains controversial. In the present study, we have examined the role of ERK1/2 in eNOS activation in HUVEC-CS [transformed HUVEC (human umbilical-vein endothelial cells)] as well as a widely used model for eNOS study, transiently transfected COS-7 cells. U0126 pretreatment of HUVEC-CS potentiated ATP-stimulated eNOS activity, independent of changes in intracellular Ca2+ concentration ([Ca2+]i). In COS-7 cells transiently expressing ovine eNOS, U0126 potentiated A23187-stimulated eNOS activity, but inhibited ATP-stimulated activity. Compensatory changes in phosphorylation of five key eNOS residues did not account for changes in A23187-stimulated activity. However, in the case of ATP, altered phosphorylation and changes in [Ca2+]i may partially contribute to U0126 inhibition of activity. Finally, seven eNOS alanine mutants of putative ERK1/2 targets were generated and the effects of U0126 pretreatment on eNOS activity were gauged with A23187 and ATP treatment. T97A-eNOS was the only construct significantly different from wild-type after U0126 pretreatment and ATP stimulation of eNOS activation. In the present study, eNOS activity was either potentiated or inhibited in COS-7 cells, suggesting agonist dependence for MEK/ERK1/2 signalling [where MEK is MAPK (mitogen-activated protein kinase)/ERK kinase] to eNOS and a complex mechanism including [Ca2+]i, phosphorylation and, possibly, intracellular trafficking.


Sign in / Sign up

Export Citation Format

Share Document