Experimental evaluation of hybrid vehicle fuel economy and pollutant emissions over real-world simulation driving cycles

2008 ◽  
Vol 42 (18) ◽  
pp. 4023-4035 ◽  
Author(s):  
Georgios Fontaras ◽  
Panayotis Pistikopoulos ◽  
Zissis Samaras
Author(s):  
Masilamani Sithananthan ◽  
Ravindra Kumar

This paper proposed a framework for development of real-world driving cycle in India after a thorough review and comparison of motorcycle driving cycles used in different countries. A limited state-of-the art work for the development of driving cycles for motorcycles is available. The motorcycle driving cycles developed by different countries differ from each other in terms of their driving cycle characteristics, emission factors, and fuel economy. This paper reviewed the parameters of real-world driving cycles of motorcycles and compares the same with legislative cycles concerning their characteristics and emissions. The parameters of real-world driving cycles and Indian legislative cycle (IDC) deviate significantly from other legislative cycles in the range of −97% to +1172% and −74% to 284% respectively. The emission factors of the legislative cycle do not match with the realistic emissions measured by real-world driving cycles. This is due to the reason that the legislative cycles do not represent the current traffic scenario and hence need to be revised. A framework is proposed to develop a real-world driving cycle in India.


2008 ◽  
Vol 1 (1) ◽  
pp. 1320-1333 ◽  
Author(s):  
Hu Li ◽  
Gordon E Andrews ◽  
Dimitrios Savvidis ◽  
Basil Daham ◽  
Karl Ropkins ◽  
...  

2012 ◽  
Vol 13 (5) ◽  
pp. 497-513 ◽  
Author(s):  
Martin Weilenmann ◽  
Dimitrios N Tsinoglou

Various models for simulating catalytic converters are given in the literature. They deal with a wide range of different aspects. In addition to the type of catalytic converter (three-way catalytic converter, diesel oxidation catalytic converter, etc.), the aspect of complexity versus accuracy and speed can be tackled using different approaches. Moreover, the desired use has an influence on the model structure: optimization of catalyst design or prediction of emissions from real-world traffic situations or optimization of air–fuel ratio control? The model described here has been developed to predict emissions in arbitrary real-world driving patterns, both for hot driving as well as for cold-start situations. As these tests mainly last over 30 minutes (real time), the calculation effort should be small. The model should be easy to parameterize, as it should be applicable to vehicles from traffic. A model with a reduced set of chemical reactions has been developed with a particular focus on the thermal balance for cold-start cycles. Its outputs are the pollutant emissions at the tailpipe if the emissions, exhaust mass flow and temperature from the engine are given. It is applied to three-way catalytic converters. It models the chemical phenomena almost entirely based on oxygen storage and release reactions, which dominate highly transient situations. The model has been validated against a large database of measured driving cycles, carried out using different types of cars. It presents an acceptable degree of correlation between simulated and experimental results.


Author(s):  
Daniel F. Opila ◽  
Xiaoyong Wang ◽  
Ryan McGee ◽  
R. Brent Gillespie ◽  
Jeffrey A. Cook ◽  
...  

Hybrid vehicle fuel economy and drive quality are coupled through the “energy management” controller that regulates power flow among the various energy sources and sinks. This paper studies energy management controllers designed using shortest path stochastic dynamic programming (SP-SDP), a stochastic optimal control design method which can respect constraints on drivetrain activity while minimizing fuel consumption for an assumed distribution of driver power demand. The performance of SP-SDP controllers is evaluated through simulation on large numbers of real-world drive cycles and compared to a baseline industrial controller provided by a major auto manufacturer. On real-world driving data, the SP-SDP-based controllers yield 10% better fuel economy than the baseline industrial controller, for the same engine and gear activity. The SP-SDP controllers are further evaluated for robustness to the drive cycle statistics used in their design. Simplified drivability metrics introduced in previous work are validated on large real-world data sets.


Fuel ◽  
2009 ◽  
Vol 88 (9) ◽  
pp. 1608-1617 ◽  
Author(s):  
Georgios Fontaras ◽  
Georgios Karavalakis ◽  
Marina Kousoulidou ◽  
Theodoros Tzamkiozis ◽  
Leonidas Ntziachristos ◽  
...  

2006 ◽  
Vol 40 (31) ◽  
pp. 5944-5953 ◽  
Author(s):  
Michel André ◽  
Robert Joumard ◽  
Robert Vidon ◽  
Patrick Tassel ◽  
Pascal Perret

Sign in / Sign up

Export Citation Format

Share Document