Effects of biodiesel on passenger car fuel consumption, regulated and non-regulated pollutant emissions over legislated and real-world driving cycles

Fuel ◽  
2009 ◽  
Vol 88 (9) ◽  
pp. 1608-1617 ◽  
Author(s):  
Georgios Fontaras ◽  
Georgios Karavalakis ◽  
Marina Kousoulidou ◽  
Theodoros Tzamkiozis ◽  
Leonidas Ntziachristos ◽  
...  
Author(s):  
M S Mustaqim ◽  
M S M Hashim ◽  
A B Shahriman ◽  
Z M Razlan ◽  
I Zunaidi ◽  
...  

Author(s):  
Hanna Sara ◽  
David Chalet ◽  
Mickaël Cormerais ◽  
Jean-François Hetet

Since the main interest worldwide of green environment companies is to reduce pollutant emissions, the automotive industry is aiming to improve engine efficiency in order to reduce fuel consumption. Recently, studies have been shifted from upgrading the engine to the auxiliary systems attached to it. Thermal management is one of the successful fields that has shown promise in minimizing fuel consumption and reducing pollutant emissions. Throughout this work, a four-cylinder turbocharged diesel engine model was developed on GT-Power. Also, a thermal code has been developed in parallel on GT-Suite, in which the different parts of the coolant and lubricant circuits were modeled and calibrated to have the best agreement with the temperature profile of the two fluids in the system. Once the model was verified, hot coolant storage, a thermal management strategy, was applied to the system to assess the fuel consumption gain. The storage tank was located downstream the thermostat and upstream the radiator with three valves to control the coolant flow. The place was chosen to avoid negative impact on the cold start-up of the engine when the tank is at the ambient temperature. This strategy was applied on different driving cycles such as the NEDC, WLTC, CADC (urban and highway), and an in-house developed driving cycle. The ambient temperature was varied between −7°C to represent the coldest winter and 20°C. The results of this study summarize the ability of the hot coolant storage strategy in reducing the fuel consumption, and show the best driving cycle that needs to be applied on along with the influence of the different ambient temperatures.


2012 ◽  
Vol 13 (5) ◽  
pp. 497-513 ◽  
Author(s):  
Martin Weilenmann ◽  
Dimitrios N Tsinoglou

Various models for simulating catalytic converters are given in the literature. They deal with a wide range of different aspects. In addition to the type of catalytic converter (three-way catalytic converter, diesel oxidation catalytic converter, etc.), the aspect of complexity versus accuracy and speed can be tackled using different approaches. Moreover, the desired use has an influence on the model structure: optimization of catalyst design or prediction of emissions from real-world traffic situations or optimization of air–fuel ratio control? The model described here has been developed to predict emissions in arbitrary real-world driving patterns, both for hot driving as well as for cold-start situations. As these tests mainly last over 30 minutes (real time), the calculation effort should be small. The model should be easy to parameterize, as it should be applicable to vehicles from traffic. A model with a reduced set of chemical reactions has been developed with a particular focus on the thermal balance for cold-start cycles. Its outputs are the pollutant emissions at the tailpipe if the emissions, exhaust mass flow and temperature from the engine are given. It is applied to three-way catalytic converters. It models the chemical phenomena almost entirely based on oxygen storage and release reactions, which dominate highly transient situations. The model has been validated against a large database of measured driving cycles, carried out using different types of cars. It presents an acceptable degree of correlation between simulated and experimental results.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 535 ◽  
Author(s):  
Christos Keramydas ◽  
Leonidas Ntziachristos ◽  
Christos Tziourtzioumis ◽  
Georgios Papadopoulos ◽  
Ting-Shek Lo ◽  
...  

Heavy-duty diesel trucks (HDDTs) comprise a key source of road transport emissions and energy consumption worldwide mainly due to the growth of road freight traffic during the last two decades. Addressing their air pollutant and greenhouse gas emissions is therefore required, while accurate emission factors are needed to logistically optimize their operation. This study characterizes real-world emissions and fuel consumption (FC) of HDDTs and investigates the factors that affect their performance. Twenty-two diesel-fueled, Euro IV to Euro VI, HDDTs of six different manufacturers were measured in the road network of the Hong Kong metropolitan area, using portable emission measurement systems (PEMS). The testing routes included urban, highway and mixed urban/highway driving. The data collected corresponds to a wide range of driving, operating, and ambient conditions. Real-world distance- and energy-based emission levels are presented in a comparative manner to capture the effect of after-treatment technologies and the role of the evolution of Euro standards on emissions performance. The emission factors’ uncertainty is analyzed. The impact of speed, road grade and vehicle weight loading on FC and emissions is investigated. An analysis of diesel particulate filter (DPF) regenerations and ammonia (NH3) slip events are presented along with the study of Nitrous oxide (N2O) formation. The results reveal deviations of real-world HDDTs emissions from emission limits, as well as the significant impact of different operating and driving factors on their performance. The occasional high levels of N2O emissions from selective catalytic reduction equipped HDDTs is also revealed, an issue that has not been thoroughly considered so far.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 76
Author(s):  
Małgorzata Mrozik ◽  
Agnieszka Merkisz-Guranowska

The environmental safety of a car is currently one of the most important indicators of vehicle competitiveness and quality in the consumer market. Currently, assessment of the ecological properties of vehicles is based on various criteria. In the case of combustion-powered cars, most attention is usually paid to the values characterizing their use, and in terms of environmental assessment, pollutant emissions, and operational fuel consumption are key factors. The current article considers the possibility of using the life cycle assessment (LCA) method to analyze the ecological properties of a passenger car during its operation. A simplified LCA method for vehicles, which, in strictly defined cases, can be used for the analysis of environmental impact and assessment of the energy analysis related to its operation, is presented. For this purpose, a vehicle life cycle model is developed. Data on the operation of 33 passenger cars from different manufacturers with similar operational characteristics, coming from different production periods, are analyzed in detail. The vehicle use model takes into account the environmental load due to fuel consumption and pollutant emissions from the internal combustion engine, as well as processes related to the maintenance of the car. The obtained results show that, from the point of view of a car’s impact on the environment throughout its life cycle, the phase of its operation plays the most important role. For the annual operation period, the results of the analysis lead to the conclusion that, in the assessment of energy inputs and related emissions throughout the life cycle of a passenger car, the mileage of the car, which is determined by both the periodicity of replacement of elements and materials subject to normal wear and the length of the adopted period, is of key importance. For the tested vehicles, both the energy input resulting from fuel consumption as well as CO2 and SO2 emissions constitute about 94% to 96% of the total input during the annual operation of the vehicle.


Sign in / Sign up

Export Citation Format

Share Document