scholarly journals Seasonal variation of levoglucosan in aerosols over the western North Pacific and its assessment as a biomass-burning tracer

2010 ◽  
Vol 44 (29) ◽  
pp. 3511-3518 ◽  
Author(s):  
Michihiro Mochida ◽  
Kimitaka Kawamura ◽  
Pingqing Fu ◽  
Toshihiko Takemura
2015 ◽  
Vol 15 (4) ◽  
pp. 1959-1973 ◽  
Author(s):  
C. Zhu ◽  
K. Kawamura ◽  
B. Kunwar

Abstract. Biomass burning (BB) largely modifies the chemical composition of atmospheric aerosols on the globe. We collected aerosol samples (TSP) at Cape Hedo, on subtropical Okinawa Island, from October 2009 to February 2012 to study anhydrosugars as BB tracers. Levoglucosan was detected as the dominant anhydrosugar followed by its isomers, mannosan and galactosan. We found a clear seasonal trend of levoglucosan and mannosan with winter maxima and summer minima. Positive correlation was found between levoglucosan and nss-K+ (r = 0.38, p < 0.001); the latter is another BB tracer. The analyses of air mass trajectories and fire spots demonstrated that the seasonal variations of anhydrosugars are caused by long-range transport of BB emissions from the Asian continent. We found winter maxima of anhydrosugars, which may be associated with open burning and domestic heating and cooking in northern and northeastern China, Mongolia and Russia and with the enhanced westerly winds. The monthly averaged levoglucosan / mannosan ratios were lower (2.1–4.8) in May–June and higher (13.3–13.9) in November–December. The lower values may be associated with softwood burning in northern China, Korea and southwestern Japan whereas the higher values are probably caused by agricultural waste burning of maize straw in the North China Plain. Anhydrosugars comprised 0.22% of water-soluble organic carbon (WSOC) and 0.13% of organic carbon (OC). The highest values to WSOC (0.37%) and OC (0.25%) were found in winter, again indicating an important BB contribution to Okinawa aerosols in winter. This study provides useful information to better understand the effect of East Asian biomass burning on the air quality in the western North Pacific Rim.


2014 ◽  
Vol 14 (18) ◽  
pp. 25581-25616 ◽  
Author(s):  
C. Zhu ◽  
K. Kawamura

Abstract. Biomass burning (BB) largely modifies the chemical compositions of atmospheric aerosols on the globe. We collected aerosol samples (TSP) at Cape Hedo, subtropical Okinawa Island from October 2009 to February 2012 to study anhydrosugars as BB tracers. Levoglucosan was detected as the dominant anhydrosugar followed by its isomers, mannosan and galactosan. We found a clear seasonal trend of levoglucosan and mannosan with winter maxima and summer minima. Positive correlation was found between levoglucosan and nss-K+ (r = 0.38, p < 0.001); the latter is another BB tracer. The analyses of air mass trajectories and fire spots demonstrated that the seasonal variations of anhydrsosugsars are caused by a long-range transport of BB emissions from the Asian continent. We found winter maxima of anhydrosugars, which may be associated with open burning and domestic heating and cooking in north and northeast China, Mongolia and Russia and with the enhanced westerly. The monthly averaged levoglucosan/mannosan ratios were lower (2.1–4.8) in May–June and higher (13.3–13.9) in November–December. The lower values may be associated with softwood burning in north China, Korea and southwest Japan whereas the higher values are probably caused by agriculture waste burning of maize straw in the North China Plain. Anhydrosugars comprised 0.22% of water-soluble organic carbon (WSOC) and 0.13% of organic carbon (OC). The highest values to WSOC (0.37%) and OC (0.25%) were found in winter, again indicating an important BB contribution to Okinawa aerosols in winter. This study provides useful information to better understand the effect of East Asian biomass burning on the air quality in the western North Pacific Rim.


2010 ◽  
Vol 40 (6) ◽  
pp. 1283-1301 ◽  
Author(s):  
Kei Sakamoto ◽  
Hiroyuki Tsujino ◽  
Shiro Nishikawa ◽  
Hideyuki Nakano ◽  
Tatsuo Motoi

Abstract The Coastal Oyashio (CO) carries the cold, fresh, and relatively light water mass called the Coastal Oyashio Water (COW) westward along the southeastern coast of Hokkaido in winter and spring. To investigate dynamics of the CO and its seasonal variation, model experiments are executed using a western North Pacific general circulation model with horizontal resolutions of approximately 2 and 6 km. The 2-km resolution model reproduces the properties of COW with temperature of 0°–2°C and salinity of 32.2–32.6 and reproduces its distribution. COW is less dense than offshore water by 0.2 kg m−3, and it forms a surface-to-bottom density front with a width of 10 km near the shelf break. The CO appears as a baroclinic jet current along the front with a maximum velocity of approximately 40 cm s−1. The velocity and density structures and the front location relative to bathymetry indicate that the CO can be understood in terms of a simplified dynamical model developed for the shelfbreak front in the Middle Atlantic Bight. In contrast to the 2-km resolution model, the 6-km model cannot realistically reproduce the COW distribution. This is because only the 2-km model can represent the sharp density structure of the shelfbreak front and the accompanying CO. The CO exists during the limited period from January to April. This is directly connected with seasonal variation of the COW inflow from the Okhotsk Sea to the North Pacific Ocean through the Nemuro and Kunashiri Straits, indicating that the seasonal variation of the CO is ultimately controlled by the variation of the circulation in the Okhotsk Sea induced by the monsoon.


Sign in / Sign up

Export Citation Format

Share Document