Seasonal characteristics of biogenic secondary organic aerosols over Chichijima Island in the western North Pacific: Impact of biomass burning activity in East Asia

Author(s):  
Santosh Kumar Verma ◽  
Kimitaka Kawamura ◽  
Dhananjay Kumar Deshmukh ◽  
Md. Mozammel Haque ◽  
Chandra Mouli Pavuluri
2016 ◽  
Vol 29 (17) ◽  
pp. 6363-6382 ◽  
Author(s):  
Zehao Song ◽  
Congwen Zhu ◽  
Jingzhi Su ◽  
Boqi Liu

Abstract The present study used harmonic and multivariate empirical orthogonal function (MV-EOF) analyses to identify the existence of climatological intraseasonal oscillation (CISO) in the diabatic heating, precipitation, and circulation of the East Asian summer monsoon (EASM). The strongest CISO signals are found in the north of the western North Pacific, possibly because of the horizontal gradient of diabatic heating induced by the seasonal land–sea thermal contrast. Further, the phase relationship between the diabatic heating components maintains the EASM CISO. The first two coupling modes of EASM CISO in the circulation are robust during May through August, with a period of 40–80 days, and exhibit phase locking to the stepwise establishment of the EASM, which reveals the coaction of the Mongolian cyclone (MC) around Lake Baikal at 850 hPa, the western North Pacific subtropical high (WNPSH) at 500 hPa, and the South Asian high (SAH) over the Tibetan Plateau (TP) at 200 hPa. The first mode shows that the jointly enhanced MC, WNPSH, and SAH correspond to a tripole rainfall anomaly with strong mei-yu and baiu fronts over East Asia. The second mode, however, indicates the eastward and northwestward propagation of MC and WNPSH, respectively, with suppressed SAH, as well as a dipole rainfall anomaly over East Asia. Both the observations and numerical simulation verify the importance of daily diabatic heating and SST in maintaining the CISO modes over the WNP, where the condensation heating related to atmospheric forcing determines the local intraseasonal air–sea interaction.


2010 ◽  
Vol 44 (22) ◽  
pp. 8453-8459 ◽  
Author(s):  
Yoshiteru Iinuma ◽  
Olaf Böge ◽  
Ricarda Gräfe ◽  
Hartmut Herrmann

2019 ◽  
Vol 32 (16) ◽  
pp. 5053-5067 ◽  
Author(s):  
Hyeonjae Lee ◽  
Chun-Sil Jin ◽  
Dong-Hyun Cha ◽  
Minkyu Lee ◽  
Dong-Kyou Lee ◽  
...  

AbstractFuture changes in tropical cyclone (TC) activity over the western North Pacific (WNP) are analyzed using four regional climate models (RCMs) within the Coordinated Regional Climate Downscaling Experiment (CORDEX) for East Asia. All RCMs are forced by the HadGEM2-AO under the historical and representative concentration pathway (RCP) 8.5 scenarios, and are performed at about 50-km resolution over the CORDEX-East Asia domain. In the historical simulations (1980–2005), multi-RCM ensembles yield realistic climatology for TC tracks and genesis frequency during the TC season (June–November), although they show somewhat systematic biases in simulating TC activity. The future (2024–49) projections indicate an insignificant increase in the total number of TC genesis (+5%), but a significant increase in track density over East Asia coastal regions (+17%). The enhanced TC activity over the East Asia coastal regions is mainly related to vertical wind shear weakened by reduced meridional temperature gradient and increased sea surface temperature (SST) at midlatitudes. The future accumulated cyclone energy (ACE) of total TCs increases significantly (+19%) because individual TCs have a longer lifetime (+6.6%) and stronger maximum wind speed (+4.1%) compared to those in the historical run. In particular, the ACE of TCs passing through 25°N increases by 45.9% in the future climate, indicating that the destructiveness of TCs can be significantly enhanced in the midlatitudes despite the total number of TCs not changing greatly.


2015 ◽  
Vol 47 (3-4) ◽  
pp. 765-778 ◽  
Author(s):  
Chun-Sil Jin ◽  
Dong-Hyun Cha ◽  
Dong-Kyou Lee ◽  
Myoung-Seok Suh ◽  
Song-You Hong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document