Particle number (PN) emissions from gasoline, diesel, LPG, CNG and hybrid-electric light-duty vehicles under real-world driving conditions

2020 ◽  
Vol 222 ◽  
pp. 117126 ◽  
Author(s):  
A. Kontses ◽  
G. Triantafyllopoulos ◽  
L. Ntziachristos ◽  
Z. Samaras
2015 ◽  
Vol 141 (7) ◽  
pp. 04015004 ◽  
Author(s):  
Hector E. Carrera ◽  
Jessica Portillo ◽  
Gerardo M. Mejia ◽  
Alberto Mendoza

Fuel ◽  
2021 ◽  
Vol 286 ◽  
pp. 119466
Author(s):  
Yachao Wang ◽  
Junfang Wang ◽  
Chunxiao Hao ◽  
Xin Wang ◽  
Qing Li ◽  
...  

Author(s):  
Meng Lyu ◽  
Xiaofeng Bao ◽  
Yunjing Wang ◽  
Ronald Matthews

Vehicle emissions standards and regulations remain weak in high-altitude regions. In this study, vehicle emissions from both the New European Driving Cycle and the Worldwide harmonized Light-duty driving Test Cycle were analyzed by employing on-road test data collected from typical roads in a high-altitude city. On-road measurements were conducted on five light-duty vehicles using a portable emissions measurement system. The certification cycle parameters were synthesized from real-world driving data using the vehicle specific power methodology. The analysis revealed that under real-world driving conditions, all emissions were generally higher than the estimated values for both the New European Driving Cycle and Worldwide harmonized Light-duty driving Test Cycle. Concerning emissions standards, more CO, NOx, and hydrocarbons were emitted by China 3 vehicles than by China 4 vehicles, whereas the CO2 emissions exhibited interesting trends with vehicle displacement and emissions standards. These results have potential implications for policymakers in regard to vehicle emissions management and control strategies aimed at emissions reduction, fleet inspection, and maintenance programs.


2015 ◽  
Vol 2503 (1) ◽  
pp. 128-136 ◽  
Author(s):  
Bin Liu ◽  
H. Christopher Frey

Accurate estimation of vehicle activity is critically important for the accurate estimation of emissions. To provide a benchmark for estimation of vehicle speed trajectories such as those from traffic simulation models, this paper demonstrates a method for quantifying light-duty vehicle activity envelopes based on real-world activity data for 100 light-duty vehicles, including conventional passenger cars, passenger trucks, and hybrid electric vehicles. The vehicle activity envelope was quanti-fied in the 95% frequency range of acceleration for each of 15 speed bins with intervals of 5 mph and a speed bin for greater than 75 mph. Potential factors affecting the activity envelope were evaluated; these factors included vehicle type, transmission type, road grade, engine displacement, engine horsepower, curb weight, and ratio of horsepower to curb weight. The activity envelope was wider for speeds ranging from 5 to 20 mph and narrowed as speed increased. The latter was consistent with a constraint on maximum achievable engine power demand. The envelope was weakly sensitive to factors such as type of vehicle, type of transmission, road grade, and engine horsepower. The effect of road grade on cycle average emissions rates was evaluated for selected real-word cycles. The measured activity envelope was compared with those of dynamometer driving cycles, such as the federal test procedure, highway fuel economy test, SC03, and US06 cycles. The effect of intervehicle variability on the activity envelope was minor; this factor implied that the envelope could be quantified based on a smaller vehicle sample than used for this study.


2019 ◽  
Vol 172 ◽  
pp. 1-9 ◽  
Author(s):  
Barouch Giechaskiel ◽  
Tero Lähde ◽  
Yannis Drossinos

Sign in / Sign up

Export Citation Format

Share Document