Impact of long-range atmospheric transport on volatile organic compounds and ozone photochemistry at a regional background site in central China

2020 ◽  
pp. 118093
Author(s):  
Xiaowei Lei ◽  
Hairong Cheng ◽  
Jin Peng ◽  
Huimeng Jiang ◽  
Xiaopu Lyu ◽  
...  
2018 ◽  
Vol 172 ◽  
pp. 133-148 ◽  
Author(s):  
Kerneels Jaars ◽  
Mika Vestenius ◽  
Pieter G. van Zyl ◽  
Johan P. Beukes ◽  
Heidi Hellén ◽  
...  

2017 ◽  
Vol 17 (18) ◽  
pp. 11355-11388 ◽  
Author(s):  
Cécile Debevec ◽  
Stéphane Sauvage ◽  
Valérie Gros ◽  
Jean Sciare ◽  
Michael Pikridas ◽  
...  

Abstract. More than 7000 atmospheric measurements of over 60 C2 − C16 volatile organic compounds (VOCs) were conducted at a background site in Cyprus during a 1-month intensive field campaign held in March 2015. This exhaustive dataset consisted of primary anthropogenic and biogenic VOCs, including a wide range of source-specific tracers, and oxygenated VOCs (with various origins) that were measured online by flame ionization detection–gas chromatography and proton transfer mass spectrometry. Online submicron aerosol chemical composition was performed in parallel using an aerosol mass spectrometer. This study presents the high temporal variability in VOCs and their associated sources. A preliminary analysis of their time series was performed on the basis of independent tracers (NO, CO, black carbon), meteorological data and the clustering of air mass trajectories. Biogenic compounds were mainly attributed to a local origin and showed compound-specific diurnal cycles such as a daily maximum for isoprene and a nighttime maximum for monoterpenes. Anthropogenic VOCs as well as oxygenated VOCs displayed higher mixing ratios under the influence of continental air masses (i.e., western Asia), indicating that long-range transport significantly contributed to the VOC levels in the area. Source apportionment was then conducted on a database of 20 VOCs (or grouped VOCs) using a source receptor model. The positive matrix factorization and concentration field analyses were hence conducted to identify and characterize covariation factors of VOCs that were representative of primary emissions as well as chemical transformation processes. A six-factor PMF solution was selected, namely two primary biogenic factors (relative contribution of 43 % to the total mass of VOCs) for different types of emitting vegetation; three anthropogenic factors (short-lived combustion source, evaporative sources, industrial and evaporative sources; 21 % all together), identified as being either of local origin or from more distant emission zones (i.e., the south coast of Turkey); and a last factor (36 %) associated with regional background pollution (air masses transported both from the Western and Eastern Mediterranean regions). One of the two biogenic and the regional background factors were found to be the largest contributors to the VOC concentrations observed at our sampling site. Finally, a combined analysis of VOC PMF factors with source-apportioned organic aerosols (OAs) helped to better distinguish between anthropogenic and biogenic influences on the aerosol and gas phase compositions. The highest OA concentrations were observed when the site was influenced by air masses rich in semi-volatile OA (less oxidized aerosols) originating from the southwest of Asia, in contrast with OA factor contributions associated with the remaining source regions. A reinforcement of secondary OA formation also occurred due to the intense oxidation of biogenic precursors.


2017 ◽  
Author(s):  
Cécile Debevec ◽  
Stéphane Sauvage ◽  
Valérie Gros ◽  
Jean Sciare ◽  
Michael Pikridas ◽  
...  

Abstract. More than 7,000 atmospheric measurements of over sixty C2-C16 Volatile Organic Compounds (VOCs) have been conducted at a background site in Cyprus during a 1-month intensive field campaign held in March 2015. This exhaustive dataset consisted in primary anthropogenic and biogenic VOCs, including a wide range of source-specific tracers, and oxygenated VOCs (originating from various origins) that were measured on-line by flame ionization detection/gas chromatography and proton transfer mass spectrometry. On-line submicron aerosol chemical composition was performed in parallel using an aerosol mass spectrometer. This study presents high temporal variability of VOCs and their associated sources. A preliminary analysis of their time series was performed on the basis of independent tracers (NO, CO, black carbon), meteorological data and clustering of air mass trajectories. Biogenic compounds were mainly attributed to be of local origin and showed compound-specific diurnal cycles such as daily maximum for isoprene and nighttime maximum for monoterpenes. Anthropogenic VOCs as well as oxygenated VOCs displayed higher mixing ratios under the influence of continental air masses (i.e. Western Asia) indicating that long-range transport significantly contributed to the VOC levels in the area. Source apportionment was then conducted on a database of 20 VOCs (or grouped VOCs) using a source receptor model. The positive matrix factorization and concentration field analyses were hence conducted to identify and characterize co-variation factors of VOCs that were representative of primary emissions as well as chemical transformation processes. A six-factor PMF solution was selected, namely two primary biogenic factors (relative contribution of 43 % to the total mass of VOCs) for different types of emitting vegetation; three anthropogenic factors (short-lived combustion source, evaporative sources, industrial and evaporative sources, 21 % all together), identified either of local origin but also from more distant emission zones (i.e. the south coasts of Turkey); and a last factor (36 %) associated to a regional background pollution (air masses transported both from Western and Eastern Mediterranean regions). One of the two biogenic and the regional background factors were found to be the largest contributors to the VOCs concentrations observed at our sampling site. Finally, a combined analysis of VOCs PMF factors with source apportioned organic aerosols (OA) helped to better distinguish between anthropogenic and biogenic influences on the aerosol and gas phase compositions. The highest OA concentrations were observed when the site was influenced by air masses rich in semi-volatile OA (less oxidized aerosols) originating from the Southwest of Asia, in contrast with OA factor contributions associated with the remaining source regions. A reinforcement of secondary OA formation also occurred due to intense oxidation of biogenic precursors.


2016 ◽  
Author(s):  
B. Bonn ◽  
E. von Schneidemesser ◽  
D. Andrich ◽  
J. Quedenau ◽  
H. Gerwig ◽  
...  

Abstract. Urban air quality and human health are among the key aspects of future urban planning. In order to address pollutants such as ozone and particulate matter, efforts need to be made to quantify and reduce their concentrations. One important aspect in understanding urban air quality is the influence of urban vegetation which may act as both, emitter and sink for trace gases and aerosol particles. In this context, the "Berlin Air quality and Ecosystem Research: Local and long-range Impact of anthropogenic and Natural hydrocarbons 2014" (BAERLIN2014) campaign was conducted between the June 2nd and August 29th in the metropolitan area of Berlin-Brandenburg, Germany. The predominant goals of the campaign were (1) the characterization of urban gaseous and particulate pollution and its attribution to anthropogenic and natural sources in the region of interest, especially considering the connection between biogenic volatile organic compounds and particulates and ozone; (2) the quantification of the impact of urban vegetation on organic trace gas levels and the presence of oxidants such as ozone; and (3) to explain the local heterogeneity of pollutants by defining the distribution of sources and sinks relevant for the interpretation of model simulations. In order to do so, the campaign included stationary measurements at an urban background station and mobile observations carried out from bicycle, van and airborne platforms. This paper provides an overview of the mobile measurements (Mobile BAERLIN2014) and general conclusions drawn from the analysis. Bicycle measurements showed micro-scale variations of temperature and particulate matter, displaying a substantial reduction of temperature and particulates in the proximity of vegetated areas compared to typical urban residential area (background) measurements. Van measurements extended the area covered by bicycle observations and included continuous measurements of O3, NOx, CO, CO2, and pointwise volatile organic compounds (VOCs) identification. The quantification displayed notable horizontal heterogeneity of the short lived gases and particle number concentrations. E.g. concentrations of the traffic related chemical species CO and NO varied by more than ±20 % and ±60 % on the scale of one hundred meters, respectively. Airborne observations revealed the dominant source of elevated urban particulate number and mass concentrations being local, i.e. not being caused by long range transport. Surface based observations related these two parameters predominantly to traffic sources. Vegetated areas lowered the pollutant concentrations substantially with ozone being reduced most by coniferous forests, which is most likely caused by their reactive biogenic VOC emissions. With respect to the overall potential to reduce air pollutant levels forests were found to result in the largest decrease, followed by parks and facilities for sports and leisure. Surface temperature was generally 0.6–2.1 °C lower in vegetated regions, which in turn will have an impact on tropospheric chemical processes. Based on our findings effective future mitigation activities to provide a more sustainable and healthier urban environment would focus predominantly on reducing fossil-fuel emissions from traffic as well as on increasing vegetated areas.


2010 ◽  
Vol 10 (3) ◽  
pp. 1269-1285 ◽  
Author(s):  
J. Suthawaree ◽  
S. Kato ◽  
K. Okuzawa ◽  
Y. Kanaya ◽  
P. Pochanart ◽  
...  

Abstract. The measurement of volatile organic compounds (VOCs) was carried out at the summit of Mount Tai, located in the center of the Central East China (CEC) region, in June 2006 as part of the Mount Tai Experiment 2006 (MTX2006), which focused on the ozone and aerosol chemistry in the region. Temporal variations of simple VOCs between 2 June and 28 June revealed the characteristics of an aged air mass with minimum local influence. A comparison of VOCs observed at Mount Tai with other Chinese sites revealed relatively similar VOC levels to remote sites and, as expected, a lower level compared to more polluted sites. However, relatively high acetylene and benzene levels at Mount Tai were evidently indicated from comparison with normalized VOC profile by ethane suggested for Beijing. Owing to a shift in boundary layer height, we observed considerable differences between daytime and nighttime VOC mixing ratios. This suggests that the site potentially has a very useful characteristic of being able to measure regional polluted air and the free troposphere regional background air quality. Influence of emissions from biomass burning in the region was evidently found to be extensive during the first half of the campaign (2–15 June), using fire spot data coupling with backward trajectory analysis. Agricultural residue burning was suggested as the primary source of emissions elucidated by the slope of the correlation plot between CH3Cl and CO obtained during the first half of the campaign.


Sign in / Sign up

Export Citation Format

Share Document