Comprehensive volatile organic compound measurements and their implications for ground-level ozone formation in the two main urban areas of Vietnam

2021 ◽  
pp. 118872
Author(s):  
To Thi Hien ◽  
Duong Huu Huy ◽  
Pamela A. Dominutti ◽  
Nguyen Doan Thien Chi ◽  
James R. Hopkins ◽  
...  
2011 ◽  
Vol 45 (10) ◽  
pp. 1841-1848 ◽  
Author(s):  
Anuj Kumar ◽  
Christopher P. Alaimo ◽  
Robert Horowitz ◽  
Frank M. Mitloehner ◽  
Michael J. Kleeman ◽  
...  

2008 ◽  
Vol 2 (1) ◽  
pp. 9-15 ◽  
Author(s):  
N. Castell ◽  
A. F. Stein ◽  
R. Salvador ◽  
E. Mantilla ◽  
M. Millán

Abstract. Throughout Europe the summer of 2003 was exceptionally warm, especially July and August. The European Environment Agency (EEA) reported several ozone episodes, mainly in the first half of August. These episodes were exceptionally long-lasting, spatially extensive, and associated to high temperatures. In this paper, the 10$ndash;15 August 2003 ozone pollution event has been analyzed using meteorological and regional air quality modelling. During this period the threshold values of the European Directive 2002/3/EC were exceeded in various areas of the Iberian Peninsula. The aim of this paper is to computationally understand and quantify the influence of biogenic volatile organic compound (BVOC) emissions in the formation of tropospheric ozone during this high ozone episode. Being able to differentiate how much ozone comes from biogenic emissions alone and how much comes from the interaction between anthropogenic and biogenic emissions would be helpful to develop a feasible and effective ozone control strategy. The impact on ozone formation was also studied in combination with various anthropogenic emission reduction strategies, i.e., when anthropogenic VOC emissions and/or NOx emissions are reduced. The results show a great dependency of the BVOC contribution to ozone formation on the antropoghenic reduction scenario. In rural areas, the impact due to a NOx and/or VOC reduction does not change the BVOC impact. Nevertheless, within big cities or industrial zones, a NOx reduction results in a decrease of the biogenic impact in ozone levels that can reach 85 μg/m3, whereas an Anthropogenic Volatile Organic Compound (AVOC) reduction results in a decrease of the BVOC contribution on ozone formation that varies from 0 to 30 μg/m3 with respect to the contribution at the same points in the 2003 base scenario. On the other hand, downwind of the big cities, a decrease in NOx produces a minor contribution of biogenic emissions and a decrease in AVOCs results in greater contributions of BVOCs to the formation of ozone.


2016 ◽  
Vol 15 (1) ◽  
pp. 007-018 ◽  
Author(s):  
Tomasz Burghardt ◽  
Anton Pashkevich ◽  
Lidia Żakowska

Solventborne road marking paints are meaningful sources of Volatile Organic Compounds (VOCs), which under solar irradiation affect formation of tropospheric ozone, a signif cant pulmonary irritant and a key pollutant responsible for smog formation. Influence of particular VOCs on ground-level ozone formation potential, quantified in Maximum Incremental Reactivities (MIR), were used to calculate potential contribution of solvents from road marking paints used in Poland to tropospheric ozone formation. Based on 2014 data, limited only to roads administered by General Directorate for National Roads and Motorways (GDDKiA), emissions of VOCs from road marking paints in Poland were about 494 838 kg, which could lead to production of up to 1 003 187 kg of ropospheric ozone. If aromatic-free solventborne paints based on ester solvents, such as are commonly used in Western Europe, were utilised, VOC emissions would not be lowered, but potentially formed ground-level ozone could be limited by 50-70%. Much better choice from the perspective of environmental protection would be the use of waterborne road marking paints like those mandated in Scandinavia – elimination of up to 82% of the emitted VOCs and up to 95% of the potentially formed tropospheric ozone could be achieved.


2004 ◽  
Vol 524 (1-2) ◽  
pp. 41-49 ◽  
Author(s):  
Maria Carmen Gómez ◽  
Nieves Durana ◽  
Marino Navazo ◽  
Lucio Alonso ◽  
Jose Antonio Garcı́a ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document