Predictability of the record-breaking rainfall over the Yangtze and Huaihe River valley in 2020 summer by the NCEP CFSv2

2022 ◽  
Vol 266 ◽  
pp. 105956
Author(s):  
Shankai Tang ◽  
Shaobo Qiao ◽  
Taichen Feng ◽  
Zhengxu Fu ◽  
Zhisen Zhang ◽  
...  
2021 ◽  
Author(s):  
Yubo Liu ◽  
Chi Zhang ◽  
Qiuhong Tang ◽  
Seyed-Mohammad Hosseini-Moghari ◽  
Gebremedhin Gebremeskel Haile ◽  
...  

2016 ◽  
Vol 29 (21) ◽  
pp. 7633-7649 ◽  
Author(s):  
Dong Si ◽  
Yihui Ding

Abstract In this study, it was found that the Pacific decadal oscillation (PDO) and the Atlantic multidecadal oscillation (AMO) are shown to be the two major drivers of the interdecadal variability of summer rainfall over East Asia. The first leading mode (PC1) of this interdecadal variability—associated with an in-phase variation of rainfall anomalies along the Yangtze River valley and Huanghe–Huaihe River valley in China—is attributed to the PDO, while the second leading mode (PC2)—associated with seesawlike rainfall anomalies between the Yangtze River valley and Huanghe–Huaihe River valley—is attributed to the AMO. The AMO teleconnects its influence to the East Asian region, and beyond, through a circumglobal stationary baroclinic wave train extending from the Atlantic Ocean, through the Eurasian continent, and extending to North America. The AMO also altered the nature of the PDO through this atmospheric teleconnection, resulting in the occurrence of a different PDO pattern (“pseudo-PDO”) between the 1960s and 2010s. The pseudo-PDO has a different anomalous SST pattern in both the tropical and midlatitude Pacific compared to the conventional PDO. The pseudo-PDO causes a distinct atmospheric response in East Asia leading to an opposite relationship with the PC1 compared to the conventional PDO, thus leading to a change in the direction of the influence of the PDO on PC1 between the 1880s–1950s and the 1960s–2010s.


Abstract Precipitation microphysics are critical for precipitation estimation and forecasting in numerical models. Using six years of observations from the Global Precipitation Measurement satellite, the spatial characteristics of precipitation microphysics are examined during the summer monsoon season over the Yangtze–Huaihe River valley. The results indicate that the heaviest convective rainfall is located mainly between the Huaihe and Yangtze Rivers, associated with a smaller mass-weighted mean diameter (Dm = ∼1.65 mm) and a larger mean generalized intercept parameter (Nw) (∼41 dBNw) at 2 km in altitude than those over the surrounding regions. Further, the convection in this region also has the lowest polarization-corrected temperature at 89 GHz (PCT89 < 254 K), indicating high concentrations of ice-hydrometeors. For a given rainfall intensity, stratiform precipitation is characterized by a smaller mean Dm than convective precipitation. Below 4.5 km in altitude, the vertical slope of medium reflectivity factor varies with the rainfall intensity, which decreases slightly downwards for light rain (< 2.5 mm h−1), increases slightly for moderate rain (2.5–7.9 mm h−1), and increases more sharply for heavy rain (≥8 mm h−1) for both convective and stratiform precipitation. The increase in the amplitude of heavy rain for stratiform precipitation is much higher than that for convective precipitation, probably due to more efficient growth by warm rain processes. The PCT89 values have a greater potential to inform the near-surface microphysical parameters in convective precipitation compared with stratiform precipitation.


2017 ◽  
Vol 51 (11-12) ◽  
pp. 4109-4121 ◽  
Author(s):  
Shixin Wang ◽  
Hongchao Zuo ◽  
Shuman Zhao ◽  
Jiankai Zhang ◽  
Sha Lu

Sign in / Sign up

Export Citation Format

Share Document