scholarly journals Microphysics of Convective and Stratiform Precipitation During the summer monsoon season over the Yangtze–Huaihe River Valley, China

Abstract Precipitation microphysics are critical for precipitation estimation and forecasting in numerical models. Using six years of observations from the Global Precipitation Measurement satellite, the spatial characteristics of precipitation microphysics are examined during the summer monsoon season over the Yangtze–Huaihe River valley. The results indicate that the heaviest convective rainfall is located mainly between the Huaihe and Yangtze Rivers, associated with a smaller mass-weighted mean diameter (Dm = ∼1.65 mm) and a larger mean generalized intercept parameter (Nw) (∼41 dBNw) at 2 km in altitude than those over the surrounding regions. Further, the convection in this region also has the lowest polarization-corrected temperature at 89 GHz (PCT89 < 254 K), indicating high concentrations of ice-hydrometeors. For a given rainfall intensity, stratiform precipitation is characterized by a smaller mean Dm than convective precipitation. Below 4.5 km in altitude, the vertical slope of medium reflectivity factor varies with the rainfall intensity, which decreases slightly downwards for light rain (< 2.5 mm h−1), increases slightly for moderate rain (2.5–7.9 mm h−1), and increases more sharply for heavy rain (≥8 mm h−1) for both convective and stratiform precipitation. The increase in the amplitude of heavy rain for stratiform precipitation is much higher than that for convective precipitation, probably due to more efficient growth by warm rain processes. The PCT89 values have a greater potential to inform the near-surface microphysical parameters in convective precipitation compared with stratiform precipitation.

Weather ◽  
2015 ◽  
Vol 70 (9) ◽  
pp. 257-261 ◽  
Author(s):  
Ashok Kumar Pokharel ◽  
John Hallett

2021 ◽  
Author(s):  
Yubo Liu ◽  
Chi Zhang ◽  
Qiuhong Tang ◽  
Seyed-Mohammad Hosseini-Moghari ◽  
Gebremedhin Gebremeskel Haile ◽  
...  

2016 ◽  
Author(s):  
Imran A. Girach ◽  
Narendra Ojha ◽  
Prabha R. Nair ◽  
Andrea Pozzer ◽  
Yogesh K. Tiwari ◽  
...  

Abstract. We present ship-borne measurements of surface ozone, carbon monoxide and methane over the Bay of Bengal (BoB), the first time such measurements have been taken during the summer monsoon season, as a part of the Continental Tropical Convergence Zone (CTCZ) experiment during 2009. O3, CO, and CH4 mixing ratios exhibited significant spatial and temporal variability in the ranges of 8–54 nmol mol−1, 50–200 nmol mol−1, and 1.57–2.15 µmol mol−1, with means of 29.7 ± 6.8 nmol mol−1, 96 ± 25 nmol mol−1, and 1.83 ± 0.14 µmol mol−1, respectively. The average mixing ratios of trace gases over northern BoB (O3: 30 ± 7 nmol mol−1, CO: 95 ± 25 nmol mol−1, CH4: 1.86 ± 0.12 µmol mol−1), in airmasses from northern or central India, did not differ much from those over central BoB (O3: 27 ± 5 nmol mol−1, CO: 101 ± 27 nmol mol−1, CH4: 1.72 ± 0.14 µmol mol−1), in airmasses from southern India. Spatial variability is observed to be most significant for CH4. The ship-based observations, in conjunction with backward air trajectories and ground-based measurements over the Indian region, are analyzed to estimate a net ozone production of 1.5–4 nmol mol−1 day−1 in the outflow. Ozone mixing ratios over the BoB showed large reductions (by ~ 20 nmol mol−1) during four rainfall events. Temporal changes in the meteorological parameters, in conjunction with ozone vertical profiles, indicate that these low ozone events are associated with downdrafts of free-tropospheric ozone-poor airmasses. While the observed variations in O3 and CO are successfully reproduced using the Weather Research and Forecasting model with Chemistry (WRF-Chem), this model overestimates mean concentrations by about 20 %, generally overestimating O3 mixing ratios during the rainfall events. Analysis of the chemical tendencies from model simulations for a low-O3 event on August 10, 2009, captured successfully by the model, shows the key role of horizontal advection in rapidly transporting ozone-rich airmasses across the BoB. Our study fills a gap in the availability of trace gas measurements over the BoB, and when combined with data from previous campaigns, reveals large seasonal amplitude (~ 39 and ~ 207 nmol mol−1 for O3 and CO, respectively) over the northern BoB.


2021 ◽  
Author(s):  
Jayesh Phadtare ◽  
Jennifer Fletcher ◽  
Andrew Ross ◽  
Andy Turner ◽  
Thorwald Stein ◽  
...  

&lt;p&gt;Precipitation distribution around an orographic barrier is controlled by the Froude Number (Fr) of the impinging flow. Fr is essentially a ratio of kinetic energy and stratification of winds around the orography. For Fr &gt; 1 (Fr &lt;1), the flow is unblocked (blocked) and precipitation occurs over the mountain peaks and the lee region (upwind region). While idealized modelling studies have robustly established this relationship, its widespread real-world application is hampered by the dearth of relevant observations. Nevertheless, the data collected in the field campaigns give us an opportunity to explore this relationship and provide a testbed for numerical models. A realistic distribution of precipitation over a mountainous region in these models is necessary for flash-flood and landslide forecasting. The Western Ghats region is a classic example where the orographically induced precipitation leads to floods and landslides during the summer monsoon season. In the recent INCOMPASS field campaign, it was shown that the precipitation over the west coast of India occurred in alternate offshore and onshore phases. The Western Ghats received precipitation predominantly during the onshore phase which was characterized by a stronger westerly flow. Here, using the radiosonde data from a station over the Indian west coast and IMERG precipitation product, we show that climatologically, these phases can be mapped over an Fr-based classification of the monsoonal westerly flow. Classifying the flow as 'High Fr' (Fr &gt;1), 'Moderate Fr' ( 0.5 &lt; Fr &amp;#8804; 1) and 'Low Fr' ( Fr &amp;#8804; 0.5 ) gives three topographical modes of precipitation -- 'Orographic', 'Coastal' and 'Offshore', respectively. &amp;#160;Moreover, these modes are not sensitive to the choice of radiosonde station over the west coast.&lt;/p&gt;


2022 ◽  
Vol 266 ◽  
pp. 105956
Author(s):  
Shankai Tang ◽  
Shaobo Qiao ◽  
Taichen Feng ◽  
Zhengxu Fu ◽  
Zhisen Zhang ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 717 ◽  
Author(s):  
Feng Chen ◽  
Magdalena Opała-Owczarek ◽  
Piotr Owczarek ◽  
Youping Chen

This study investigates the potential reconstruction of summer monsoon season streamflow variations in the middle reaches of the Yellow River from tree rings in the Qinling Mountains. The regional chronology is significantly positively correlated with the July–October streamflow of the middle Yellow River from 1919 to 1949, and the derived reconstruction explains 36.4% of the actual streamflow variance during this period. High streamflows occurred during 1644–1757, 1795–1806, 1818–1833, 1882–1900, 1909–1920 and 1933–1963. Low streamflows occurred during 1570–1643, 1758–1794, 1807–1817, 1834–1868, 1921–1932 and 1964–2012. High and low streamflow intervals also correspond well to the East Asian summer monsoon (EASM) intensity. Some negative correlations of our streamflow reconstruction with Indo-Pacific sea surface temperature (SST) also suggest the linkage of regional streamflow changes to the Asian summer monsoon circulation. Although climate change has some important effects on the variation in streamflow, anthropogenic activities are the primary factors mediating the flow cessation of the Yellow River, based on streamflow reconstruction.


Author(s):  
Raghavendra Ashrit ◽  
S. Indira Rani ◽  
Sushant Kumar ◽  
S. Karunasagar ◽  
T. Arulalan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document