scholarly journals Resistance of plant communities to invasion by tall fescue (Festuca arundinacea): an experimental study combining species diversity, functional traits and nutrient levels

Author(s):  
Shinyeong Park ◽  
Jae Hyun Kim ◽  
Eun Ju Lee
2018 ◽  
Author(s):  
Erika LaPlante ◽  
Lara Souza

Background. Understanding the underlying factors that determine the relative abundance of plant species is critical to predict both biodiversity and ecosystem function. Biotic and abiotic factors can shape the distribution and the relative abundance of species across natural communities, greatly influencing local biodiversity. Methods. Using a combination of an observational study and a five-year plant removal experiment we: (1) documented how plant diversity and composition of montane meadow assemblages vary along a plant dominance gradient using an observational study; (2) tracked above- and belowground functional traits of co-dominant plant species Potentilla and Festuca along a plant dominance gradient in an observational study; (3) determined whether plant species diversity and composition was directly influenced by commonly occurring species Potentilla and Festuca with the use of a randomized plot design, 5-year plant removal experiment (no removal control, Potentilla removed, Festuca removed, n=10) . Results. We found that subordinate species diversity and compositional dissimilarity were greatest in Potentilla and Festuca co-dominated sites, where neither Potentilla nor Festuca dominated, rather than at sites where either species became dominant. Further, while above- and belowground plant functional traits varied along a dominance gradient, they did so in a way that inconsistently predicted plant species relative abundance. Also, neither variation in plant functional traits of Festuca and Potentilla nor variation in resources and conditions (such as soil nitrogen and temperature) explained our subordinate diversity patterns. Finally, neither Potentilla nor Festuca influenced subordinate diversity or composition when we directly tested for their impacts in a plant removal experiment. Discussion. Taken together, patterns of subordinate diversity and composition were likely driven by abiotic factors rather than biotic interactions. As a result, the role of abiotic factors influencing local-level species interactions can be just as important as biotic interactions themselves in structuring plant communities.


2018 ◽  
Author(s):  
Erika LaPlante ◽  
Lara Souza

Background. Understanding the underlying factors that determine the relative abundance of plant species is critical to predict both biodiversity and ecosystem function. Biotic and abiotic factors can shape the distribution and the relative abundance of species across natural communities, greatly influencing local biodiversity. Methods. Using a combination of an observational study and a five-year plant removal experiment we: (1) documented how plant diversity and composition of montane meadow assemblages vary along a plant dominance gradient using an observational study; (2) tracked above- and belowground functional traits of co-dominant plant species Potentilla and Festuca along a plant dominance gradient in an observational study; (3) determined whether plant species diversity and composition was directly influenced by commonly occurring species Potentilla and Festuca with the use of a randomized plot design, 5-year plant removal experiment (no removal control, Potentilla removed, Festuca removed, n=10) . Results. We found that subordinate species diversity and compositional dissimilarity were greatest in Potentilla and Festuca co-dominated sites, where neither Potentilla nor Festuca dominated, rather than at sites where either species became dominant. Further, while above- and belowground plant functional traits varied along a dominance gradient, they did so in a way that inconsistently predicted plant species relative abundance. Also, neither variation in plant functional traits of Festuca and Potentilla nor variation in resources and conditions (such as soil nitrogen and temperature) explained our subordinate diversity patterns. Finally, neither Potentilla nor Festuca influenced subordinate diversity or composition when we directly tested for their impacts in a plant removal experiment. Discussion. Taken together, patterns of subordinate diversity and composition were likely driven by abiotic factors rather than biotic interactions. As a result, the role of abiotic factors influencing local-level species interactions can be just as important as biotic interactions themselves in structuring plant communities.


Author(s):  
J. Monk ◽  
E. Gerard ◽  
S. Young ◽  
K. Widdup ◽  
M. O'Callaghan

Tall fescue (Festuca arundinacea) is a useful alternative to ryegrass in New Zealand pasture but it is slow to establish. Naturally occurring beneficial bacteria in the rhizosphere can improve plant growth and health through a variety of direct and indirect mechanisms. Keywords: rhizosphere, endorhiza, auxin, siderophore, P-solubilisation


Author(s):  
B.R. Watkin

AN Aberystwyth selection of tall fescue (Festuca arundinacea Schreb.), known as S170, was sown with certified New Zealand white clover (Trifolium repens) and re' clover (T. pratense) and compared under sheep grazing with other grass/clover pastures at the Grasslands Division Regional Station at Lincoln (Watkin, 1975) .


2014 ◽  
Vol 37 (11) ◽  
pp. 979-987 ◽  
Author(s):  
Jun-Qiang CHEN ◽  
Rui ZHANG ◽  
Yao-Chen HOU ◽  
Li-Na MA ◽  
Lu-Ming DING ◽  
...  

Chemosphere ◽  
2021 ◽  
Vol 276 ◽  
pp. 130186
Author(s):  
ShaoFan Zuo ◽  
Shuai Hu ◽  
JinLiang Rao ◽  
Qin Dong ◽  
ZhaoLong Wang

Vegetatio ◽  
1980 ◽  
Vol 43 (1-2) ◽  
pp. 59-72 ◽  
Author(s):  
C. Houssard ◽  
J. Escarr� ◽  
F. Bomane

Sign in / Sign up

Export Citation Format

Share Document