scholarly journals The neural basis of cognitive control: Response selection and inhibition

2009 ◽  
Vol 71 (2) ◽  
pp. 72-83 ◽  
Author(s):  
Vina M. Goghari ◽  
Angus W. MacDonald
2014 ◽  
Vol 26 (2) ◽  
pp. 334-351 ◽  
Author(s):  
Aaron T. Buss ◽  
Tim Wifall ◽  
Eliot Hazeltine ◽  
John P. Spencer

People are typically slower when executing two tasks than when only performing a single task. These dual-task costs are initially robust but are reduced with practice. Dux et al. ( 2009 ) explored the neural basis of dual-task costs and learning using fMRI. Inferior frontal junction (IFJ) showed a larger hemodynamic response on dual-task trials compared with single-task trial early in learning. As dual-task costs were eliminated, dual-task hemodynamics in IFJ reduced to single-task levels. Dux and colleagues concluded that the reduction of dual-task costs is accomplished through increased efficiency of information processing in IFJ. We present a dynamic field theory of response selection that addresses two questions regarding these results. First, what mechanism leads to the reduction of dual-task costs and associated changes in hemodynamics? We show that a simple Hebbian learning mechanism is able to capture the quantitative details of learning at both the behavioral and neural levels. Second, is efficiency isolated to cognitive control areas such as IFJ, or is it also evident in sensory motor areas? To investigate this, we restrict Hebbian learning to different parts of the neural model. None of the restricted learning models showed the same reductions in dual-task costs as the unrestricted learning model, suggesting that efficiency is distributed across cognitive control and sensory motor processing systems.


2019 ◽  
Vol 8 (9) ◽  
pp. 1317 ◽  
Author(s):  
Antje Opitz ◽  
Jan Hubert ◽  
Christian Beste ◽  
Ann-Kathrin Stock

Alcohol hangover commonly occurs after an episode of heavy drinking. It has previously been demonstrated that acute high-dose alcohol intoxication reduces cognitive control, while automatic processes remain comparatively unaffected. However, it has remained unclear whether alcohol hangover, as a consequence of binge drinking, modulates the interplay between cognitive control and automaticity in a comparable way. Therefore, the purpose of this study was to investigate the effects of alcohol hangover on controlled versus automatic response selection and inhibition. N = 34 healthy young men completed a Simon Nogo task, once sober and once hungover. Hangover symptoms were experimentally induced by a standardized administration of alcoholic drinks (with high congener content) on the night before the hangover appointment. We found no significant hangover effects, which suggests that alcohol hangover did not produce the same functional deficits as an acute high-dose intoxication. Yet still, add-on Bayesian analyses revealed that hangover slightly impaired response selection, but not response inhibition. This pattern of effects cannot be explained with the current knowledge on how ethanol and its metabolite acetaldehyde may modulate response selection and inhibition via the dopaminergic or GABAergic system.


Neuron ◽  
2017 ◽  
Vol 96 (6) ◽  
pp. 1447-1458.e6 ◽  
Author(s):  
Kitty Z. Xu ◽  
Brian A. Anderson ◽  
Erik E. Emeric ◽  
Anthony W. Sali ◽  
Veit Stuphorn ◽  
...  

2019 ◽  
Vol 22 (3) ◽  
pp. 286-295 ◽  
Author(s):  
Isabella A. Breukelaar ◽  
May Erlinger ◽  
Anthony Harris ◽  
Philip Boyce ◽  
Philip Hazell ◽  
...  

2009 ◽  
Vol 21 (8) ◽  
pp. 1461-1472 ◽  
Author(s):  
Ángel Correa ◽  
Anling Rao ◽  
Anna C. Nobre

Cognitive control can be triggered in reaction to previous conflict, as suggested by the finding of sequential effects in conflict tasks. Can control also be triggered proactively by presenting cues predicting conflict (“proactive control”)? We exploited the high temporal resolution of ERPs and controlled for sequential effects to ask whether proactive control based on anticipating conflict modulates neural activity related to cognitive control, as may be predicted from the conflict-monitoring model. ERPs associated with conflict detection (N2) were measured during a cued flanker task. Symbolic cues were either informative or neutral with respect to whether the target involved conflicting or congruent responses. Sequential effects were controlled by analyzing the congruency of the previous trial. The results showed that cueing conflict facilitated conflict resolution and reduced the N2 latency. Other potentials (frontal N1 and P3) were also modulated by cueing conflict. Cueing effects were most evident after congruent than after incongruent trials. This interaction between cueing and sequential effects suggests neural overlap between the control networks triggered by proactive and reactive signals. This finding clarifies why previous neuroimaging studies, in which reactive sequential effects were not controlled, have rarely found anticipatory effects upon conflict-related activity. Finally, the high temporal resolution of ERPs was critical to reveal a temporal modulation of conflict detection by proactive control. This novel finding suggests that anticipating conflict speeds up conflict detection and resolution. Recent research suggests that this anticipatory mechanism may be mediated by preactivation of ACC during the preparatory interval.


2015 ◽  
Vol 36 (7) ◽  
pp. 2781-2794 ◽  
Author(s):  
Gerd Wagner ◽  
Claudia Schachtzabel ◽  
Gregor Peikert ◽  
Karl‐Jürgen Bär

2009 ◽  
Vol 21 (12) ◽  
pp. 2434-2444 ◽  
Author(s):  
David January ◽  
John C. Trueswell ◽  
Sharon L. Thompson-Schill

For over a century, a link between left prefrontal cortex and language processing has been accepted, yet the precise characterization of this link remains elusive. Recent advances in both the study of sentence processing and the neuroscientific study of frontal lobe function suggest an intriguing possibility: The demands to resolve competition between incompatible characterizations of a linguistic stimulus may recruit top–down cognitive control processes mediated by prefrontal cortex. We use functional magnetic resonance imaging to test the hypothesis that individuals use shared prefrontal neural circuitry during two very different tasks—color identification under Stroop conflict and sentence comprehension under conditions of syntactic ambiguity—both of which putatively rely on cognitive control processes. We report the first demonstration of within-subject overlap in neural responses to syntactic and nonsyntactic conflict. These findings serve to clarify the role of Broca's area in, and the neural and psychological organization of, the language processing system.


2011 ◽  
Vol 23 (10) ◽  
pp. 2905-2919 ◽  
Author(s):  
Benjamin J. Tamber-Rosenau ◽  
Michael Esterman ◽  
Yu-Chin Chiu ◽  
Steven Yantis

Organisms operate within both a perceptual domain of objects and events, and a mnemonic domain of past experiences and future goals. Each domain requires a deliberate selection of task-relevant information, through deployments of external (perceptual) and internal (mnemonic) attention, respectively. Little is known about the control of attention shifts in working memory, or whether voluntary control of attention in these two domains is subserved by a common or by distinct functional networks. We used human fMRI to examine the neural basis of cognitive control while participants shifted attention in vision and in working memory. We found that these acts of control recruit in common a subset of the dorsal fronto-parietal attentional control network, including the medial superior parietal lobule, intraparietal sulcus, and superior frontal sulcus/gyrus. Event-related multivoxel pattern classification reveals, however, that these regions exhibit distinct spatio-temporal patterns of neural activity during internal and external shifts of attention, respectively. These findings constrain theoretical accounts of selection in working memory and perception by showing that populations of neurons in dorsal fronto-parietal network regions exhibit selective tuning for acts of cognitive control in different cognitive domains.


2017 ◽  
Author(s):  
Cameron Parro ◽  
Matthew L Dixon ◽  
Kalina Christoff

AbstractCognitive control mechanisms support the deliberate regulation of thought and behavior based on current goals. Recent work suggests that motivational incentives improve cognitive control, and has begun to elucidate the brain regions that may support this effect. Here, we conducted a quantitative meta-analysis of neuroimaging studies of motivated cognitive control using activation likelihood estimation (ALE) and Neurosynth in order to delineate the brain regions that are consistently activated across studies. The analysis included functional neuroimaging studies that investigated changes in brain activation during cognitive control tasks when reward incentives were present versus absent. The ALE analysis revealed consistent recruitment in regions associated with the frontoparietal control network including the inferior frontal sulcus (IFS) and intraparietal sulcus (IPS), as well as consistent recruitment in regions associated with the salience network including the anterior insula and anterior mid-cingulate cortex (aMCC). A large-scale exploratory meta-analysis using Neurosynth replicated the ALE results, and also identified the caudate nucleus, nucleus accumbens, medial thalamus, inferior frontal junction/premotor cortex (IFJ/PMC), and hippocampus. Finally, we conducted separate ALE analyses to compare recruitment during cue and target periods, which tap into proactive engagement of rule-outcome associations, and the mobilization of appropriate viscero-motor states to execute a response, respectively. We found that largely distinct sets of brain regions are recruited during cue and target periods. Altogether, these findings suggest that flexible interactions between frontoparietal, salience, and dopaminergic midbrain-striatal networks may allow control demands to be precisely tailored based on expected value.


Sign in / Sign up

Export Citation Format

Share Document