scholarly journals BAX insertion, oligomerization, and outer membrane permeabilization in brain mitochondria: Role of permeability transition and SH-redox regulation

2010 ◽  
Vol 1797 (11) ◽  
pp. 1795-1806 ◽  
Author(s):  
Tatiana Brustovetsky ◽  
Tsyregma Li ◽  
Youyun Yang ◽  
Jiang-Ting Zhang ◽  
Bruno Antonsson ◽  
...  
2007 ◽  
Vol 28 (10) ◽  
pp. 1532-1542 ◽  
Author(s):  
Roman A. Eliseev ◽  
Gleb Filippov ◽  
Janice Velos ◽  
Beth VanWinkle ◽  
Aaron Goldman ◽  
...  

2021 ◽  
Vol 22 (16) ◽  
pp. 8560
Author(s):  
Ekaterina Kharechkina ◽  
Anna Nikiforova ◽  
Alexey Kruglov

The opening of the permeability transition pore (mPTP) in mitochondria initiates cell death in numerous diseases. The regulation of mPTP by NAD(H) in the mitochondrial matrix is well established; however, the role of extramitochondrial (cytosolic) NAD(H) is still unclear. We studied the effect of added NADH and NAD+ on: (1) the Ca2+-retention capacity (CRC) of isolated rat liver, heart, and brain mitochondria; (2) the Ca2+-dependent mitochondrial swelling in media whose particles can (KCl) or cannot (sucrose) be extruded from the matrix by mitochondrial carriers; (3) the Ca2+-dependent mitochondrial depolarization and the release of entrapped calcein from mitochondria of permeabilized hepatocytes; and (4) the Ca2+-dependent mitochondrial depolarization and subsequent repolarization. NADH and NAD+ increased the CRC of liver, heart, and brain mitochondria 1.5–2.5 times, insignificantly affecting the rate of Ca2+-uptake and the free Ca2+ concentration in the medium. NAD(H) suppressed the Ca2+-dependent mitochondrial swelling both in KCl- and sucrose-based media but did not induce the contraction and repolarization of swollen mitochondria. By contrast, EGTA caused mitochondrial repolarization in both media and the contraction in KCl-based medium only. NAD(H) delayed the Ca2+-dependent depolarization and the release of calcein from individual mitochondria in hepatocytes. These data unambiguously demonstrate the existence of an external NAD(H)-dependent site of mPTP regulation.


2018 ◽  
Author(s):  
Mateus Milani ◽  
Gerald M Cohen ◽  
Shankar Varadarajan

AbstractThe mitochondrial fission machinery, comprising a dynamin-related GTPase, DRP-1, is crucial for the regulation of mitochondrial membrane dynamics. Recent reports suggest that the tubular architecture of the endoplasmic reticulum (ER) marks the constriction sites on the mitochondria to facilitate DRP-1-mediated mitochondrial fission. However, the role of several ER shaping proteins that maintain the elaborate network of tubes and sheets in mitochondrial constriction and fission is not yet known. In this report, we demonstrate that modulation of the expression levels of key ER shaping proteins, namely Reticulon1 (RTN-1), Reticulon 4 (RTN-4), Lunapark-1 (LNP-1) and CLIMP-63, markedly decreased the extent of mitochondrial fission mediated by BH3 mimetics, despite no detectable changes in DRP-1 recruitment to the mitochondria. Furthermore, modulation of ER shaping proteins significantly decreased other hallmarks of apoptosis, such as mitochondrial outer membrane permeabilization, caspase activation and phosphatidylserine externalization, and functioned independently of mitochondrial cristae remodeling, thus demonstrating a requirement of ER shaping proteins and ER structural integrity for the efficient execution of the instrinsic apoptotic pathway.


Sign in / Sign up

Export Citation Format

Share Document