scholarly journals Proposed mechanisms for water oxidation by Photosystem II and nanosized manganese oxides

2017 ◽  
Vol 1858 (2) ◽  
pp. 156-174 ◽  
Author(s):  
Mohamad Mahdi Najafpour ◽  
Sima Heidari ◽  
S. Esmael Balaghi ◽  
Małgorzata Hołyńska ◽  
Moayad Hossaini Sadr ◽  
...  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Petko Chernev ◽  
Sophie Fischer ◽  
Jutta Hoffmann ◽  
Nicholas Oliver ◽  
Ricardo Assunção ◽  
...  

AbstractWater oxidation and concomitant dioxygen formation by the manganese-calcium cluster of oxygenic photosynthesis has shaped the biosphere, atmosphere, and geosphere. It has been hypothesized that at an early stage of evolution, before photosynthetic water oxidation became prominent, light-driven formation of manganese oxides from dissolved Mn(2+) ions may have played a key role in bioenergetics and possibly facilitated early geological manganese deposits. Here we report the biochemical evidence for the ability of photosystems to form extended manganese oxide particles. The photochemical redox processes in spinach photosystem-II particles devoid of the manganese-calcium cluster are tracked by visible-light and X-ray spectroscopy. Oxidation of dissolved manganese ions results in high-valent Mn(III,IV)-oxide nanoparticles of the birnessite type bound to photosystem II, with 50-100 manganese ions per photosystem. Having shown that even today’s photosystem II can form birnessite-type oxide particles efficiently, we propose an evolutionary scenario, which involves manganese-oxide production by ancestral photosystems, later followed by down-sizing of protein-bound manganese-oxide nanoparticles to finally yield today’s catalyst of photosynthetic water oxidation.


2013 ◽  
Vol 110 (22) ◽  
pp. 8801-8806 ◽  
Author(s):  
N. Birkner ◽  
S. Nayeri ◽  
B. Pashaei ◽  
M. M. Najafpour ◽  
W. H. Casey ◽  
...  

ChemSusChem ◽  
2014 ◽  
Vol 7 (8) ◽  
pp. 2202-2211 ◽  
Author(s):  
Prashanth W. Menezes ◽  
Arindam Indra ◽  
Patrick Littlewood ◽  
Michael Schwarze ◽  
Caren Göbel ◽  
...  

2012 ◽  
Vol 9 (75) ◽  
pp. 2383-2395 ◽  
Author(s):  
Mohammad Mahdi Najafpour ◽  
Fahimeh Rahimi ◽  
Eva-Mari Aro ◽  
Choon-Hwan Lee ◽  
Suleyman I. Allakhverdiev

There has been a tremendous surge in research on the synthesis of various metal compounds aimed at simulating the water-oxidizing complex (WOC) of photosystem II (PSII). This is crucial because the water oxidation half reaction is overwhelmingly rate-limiting and needs high over-voltage (approx. 1 V), which results in low conversion efficiencies when working at current densities required for hydrogen production via water splitting. Particular attention has been given to the manganese compounds not only because manganese has been used by nature to oxidize water but also because manganese is cheap and environmentally friendly. The manganese–calcium cluster in PSII has a dimension of about approximately 0.5 nm. Thus, nano-sized manganese compounds might be good structural and functional models for the cluster. As in the nanometre-size of the synthetic models, most of the active sites are at the surface, these compounds could be more efficient catalysts than micrometre (or bigger) particles. In this paper, we focus on nano-sized manganese oxides as functional and structural models of the WOC of PSII for hydrogen production via water splitting and review nano-sized manganese oxides used in water oxidation by some research groups.


2014 ◽  
Vol 7 (7) ◽  
pp. 2203 ◽  
Author(s):  
M. Wiechen ◽  
M. M. Najafpour ◽  
S. I. Allakhverdiev ◽  
L. Spiccia

1998 ◽  
Vol 53 (9-10) ◽  
pp. 849-856
Author(s):  
Sujata R. Mishra ◽  
Surendra Chandra Sabat

Stimulatory effect of divalent cations like calcium (Ca2+) and magnesium (Mg2+) was investigated on electron transport activity of divalent cation deficient low-salt suspended (LS) thylakoid preparation from a submerged aquatic angiosperm, Hydrilla verticillata. Both the cations stimulated electron transport activity of LS-suspended thylakoids having an intact water oxidation complex. But in hydroxylamine (NH2OH) - or alkaline Tris - washed thylakoid preparations (with the water oxidation enzyme impaired), only Ca2+ dependent stimulation of electron transport activity was found. The apparent Km of Ca2+ dependent stimulation of electron flow from H2O (endogenous) or from artificial electron donor (exogenous) to dichlorophenol indophenol (acceptor) was found to be identical. Calcium supported stimulation of electron transport activity in NH2OH - or Tris - washed thylakoids was electron donor selective, i.e., Ca2+ ion was only effective in electron flow with diphenylcarbazide but not with NH2OH as electron donor to photosystem II. A magnesium effect was observed in thylakoids having an intact water oxidation complex and the ion became unacceptable in NH2OH - or Tris - washed thylakoids. Indirect experimental evidences have been presented to suggest that Mg2+ interacts with the water oxidation complex, while the Ca2+ interaction is localized betw een Yz and reaction center of photosystem II.


2018 ◽  
Vol 20 (35) ◽  
pp. 22926-22931 ◽  
Author(s):  
Per E. M. Siegbahn

The formation of O2 from water requires four transitions, each one after the absorption of one light flash.


Sign in / Sign up

Export Citation Format

Share Document