scholarly journals Nitrite lowers the oxygen cost of ATP supply in skeletal muscle cells by stimulating the rate of glycolytic ATP synthesis

2018 ◽  
Vol 1859 ◽  
pp. e55
Author(s):  
Charles Affourtit ◽  
Anthony Wynne
Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 916
Author(s):  
Federica Geddo ◽  
Susanna Antoniotti ◽  
Giulia Querio ◽  
Iris Chiara Salaroglio ◽  
Costanzo Costamagna ◽  
...  

Skeletal muscle plays a pivotal role in whole-body glucose metabolism, accounting for the highest percentage of glucose uptake and utilization in healthy subjects. Impairment of these key functions occurs in several conditions including sedentary lifestyle and aging, driving toward hyperglycemia and metabolic chronic diseases. Therefore, strategies pointed to improve metabolic health by targeting skeletal muscle biochemical pathways are extremely attractive. Among them, we focused on the natural sesquiterpene and cannabinoid type 2 (CB2) receptor agonist Trans-β-caryophyllene (BCP) by analyzing its role in enhancing glucose metabolism in skeletal muscle cells. Experiments were performed on C2C12 myotubes. CB2 receptor membrane localization in myotubes was assessed by immunofluorescence. Within glucose metabolism, we evaluated glucose uptake (by the fluorescent glucose analog 2-NBDG), key enzymes of both glycolytic and oxidative pathways (by spectrophotometric assays and metabolic radiolabeling) and ATP production (by chemiluminescence-based assays). In all experiments, CB2 receptor involvement was tested with the CB2 antagonists AM630 and SR144528. Our results show that in myotubes, BCP significantly enhances glucose uptake, glycolytic and oxidative pathways, and ATP synthesis through a CB2-dependent mechanism. Giving these outcomes, CB2 receptor stimulation by BCP could represent an appealing tool to improve skeletal muscle glucose metabolism, both in physiological and pathological conditions.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
II Ezeigbo ◽  
C Wheeler-Jones ◽  
S Gibbons ◽  
ME Cleasby

2018 ◽  
Author(s):  
S Höckele ◽  
P Huypens ◽  
C Hoffmann ◽  
T Jeske ◽  
M Hastreiter ◽  
...  

2021 ◽  
Vol 22 (10) ◽  
pp. 5276
Author(s):  
Coralie Croissant ◽  
Romain Carmeille ◽  
Charlotte Brévart ◽  
Anthony Bouter

Muscular dystrophies constitute a group of genetic disorders that cause weakness and progressive loss of skeletal muscle mass. Among them, Miyoshi muscular dystrophy 1 (MMD1), limb girdle muscular dystrophy type R2 (LGMDR2/2B), and LGMDR12 (2L) are characterized by mutation in gene encoding key membrane-repair protein, which leads to severe dysfunctions in sarcolemma repair. Cell membrane disruption is a physiological event induced by mechanical stress, such as muscle contraction and stretching. Like many eukaryotic cells, muscle fibers possess a protein machinery ensuring fast resealing of damaged plasma membrane. Members of the annexins A (ANXA) family belong to this protein machinery. ANXA are small soluble proteins, twelve in number in humans, which share the property of binding to membranes exposing negatively-charged phospholipids in the presence of calcium (Ca2+). Many ANXA have been reported to participate in membrane repair of varied cell types and species, including human skeletal muscle cells in which they may play a collective role in protection and repair of the sarcolemma. Here, we discuss the participation of ANXA in membrane repair of healthy skeletal muscle cells and how dysregulation of ANXA expression may impact the clinical severity of muscular dystrophies.


Sign in / Sign up

Export Citation Format

Share Document