atp supply
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 29)

H-INDEX

31
(FIVE YEARS 5)

PLoS Genetics ◽  
2021 ◽  
Vol 17 (10) ◽  
pp. e1009817
Author(s):  
Pengjie Hu ◽  
Hao Ding ◽  
Lan Shen ◽  
Guang-Jun He ◽  
Huimin Liu ◽  
...  

The yeast-to-hypha transition is tightly associated with pathogenicity in many human pathogenic fungi, such as the model fungal pathogen Cryptococcus neoformans, which is responsible for approximately 180,000 deaths annually. In this pathogen, the yeast-to-hypha transition can be initiated by distinct stimuli: mating stimulation or glucosamine (GlcN), the monomer of cell wall chitosan. However, it remains poorly understood how the signal specificity for Cryptococcus morphological transition by disparate stimuli is ensured. Here, by integrating temporal expression signature analysis and phenome-based clustering evaluation, we demonstrate that GlcN specifically triggers a unique cellular response, which acts as a critical determinant underlying the activation of GlcN-induced filamentation (GIF). This cellular response is defined by an unusually hyperactive cell wall synthesis that is highly ATP-consuming. A novel cell surface protein Gis1 was identified as the indicator molecule for the GlcN-induced cell wall response. The Mpk1-directed cell wall pathway critically bridges global cell wall gene induction and intracellular ATP supply, ensuring the Gis1-dependent cell wall response and the stimulus specificity of GIF. We further reveal that the ability of Mpk1 to coordinate the cell wall response and GIF activation is conserved in different Cryptococcus pathogens. Phosphoproteomics-based profiling together with genetic and phenotypic analysis revealed that the Mpk1 kinase mediates the regulatory specificity of GIF through a coordinated downstream regulatory network centered on Skn7 and Crz1. Overall, our findings discover an unprecedented and conserved cell wall biosynthesis-dependent fungal differentiation commitment mechanism, which enables the signal specificity of pathogenicity-related dimorphism induced by GlcN in Cryptococcus pathogens.


2021 ◽  
Vol 22 (17) ◽  
pp. 9507
Author(s):  
Anna Kubicka ◽  
Karolina Matczak ◽  
Magdalena Łabieniec-Watała

In spite of the continuous improvement in our knowledge of the nature of cancer, the causes of its formation and the development of new treatment methods, our knowledge is still incomplete. A key issue is the difference in metabolism between normal and cancer cells. The features that distinguish cancer cells from normal cells are the increased proliferation and abnormal differentiation and maturation of these cells, which are due to regulatory changes in the emerging tumour. Normal cells use oxidative phosphorylation (OXPHOS) in the mitochondrion as a major source of energy during division. During OXPHOS, there are 36 ATP molecules produced from one molecule of glucose, in contrast to glycolysis which provides an ATP supply of only two molecules. Although aerobic glucose metabolism is more efficient, metabolism based on intensive glycolysis provides intermediate metabolites necessary for the synthesis of nucleic acids, proteins and lipids, which are in constant high demand due to the intense cell division in cancer. This is the main reason why the cancer cell does not “give up” on glycolysis despite the high demand for energy in the form of ATP. One of the evolving trends in the development of anti-cancer therapies is to exploit differences in the metabolism of normal cells and cancer cells. Currently constructed therapies, based on cell metabolism, focus on the attempt to reprogram the metabolic pathways of the cell in such a manner that it becomes possible to stop unrestrained proliferation.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 503
Author(s):  
Elie Farhat ◽  
Jean-Michel Weber

Metabolic suppression is an essential strategy to cope with chronic hypoxia. This review examines the physiological processes used to survive in low oxygen environments. It proposes a novel mechanism–the remodeling of membrane lipids–to suppress ATP use and production. Temperature (homeoviscous adaptation), diet (natural doping in migrant birds) and body mass (membrane pacemaker of metabolism) have an impact on the lipid composition of membranes, which, in turn, modulates metabolic capacity. Vertebrate champions of hypoxia tolerance show extensive changes in membrane lipids upon in vivo exposure to low oxygen. These changes and those observed in hibernating mammals can promote the downregulation of ion pumps (major ATP consumers), ion channels, mitochondrial respiration capacity (state 3, proton leak, cytochrome c oxidase), and energy metabolism (β-oxidation and glycolysis). A common membrane signal regulating the joint inhibition of ion pumps and channels could be an exquisite way to preserve the balance between ATP supply and demand in hypometabolic states. Membrane remodeling together with more traditional mechanisms could work in concert to cause metabolic suppression.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jason I. E. Bruce ◽  
Rosa Sánchez-Alvarez ◽  
Maria Dolors Sans ◽  
Sarah A. Sugden ◽  
Nathan Qi ◽  
...  

AbstractAcute pancreatitis (AP) is serious inflammatory disease of the pancreas. Accumulating evidence links diabetes with severity of AP, suggesting that endogenous insulin may be protective. We investigated this putative protective effect of insulin during cellular and in vivo models of AP in diabetic mice (Ins2Akita) and Pancreatic Acinar cell-specific Conditional Insulin Receptor Knock Out mice (PACIRKO). Caerulein and palmitoleic acid (POA)/ethanol-induced pancreatitis was more severe in both Ins2Akita and PACIRKO vs control mice, suggesting that endogenous insulin directly protects acinar cells in vivo. In isolated pancreatic acinar cells, insulin induced Akt-mediated phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2) which upregulated glycolysis thereby preventing POA-induced ATP depletion, inhibition of the ATP-dependent plasma membrane Ca2+ ATPase (PMCA) and cytotoxic Ca2+ overload. These data provide the first mechanistic link between diabetes and severity of AP and suggest that phosphorylation of PFKFB2 may represent a potential therapeutic strategy for treatment of AP.


2021 ◽  
Vol 17 (7) ◽  
pp. 1404-1416
Author(s):  
Zhi-Qiang Zhao ◽  
Wei Song ◽  
Xue-Qin Yan ◽  
Jin-Hai Tang ◽  
Jun-Chen Hou ◽  
...  

The development of multidrug resistance (MDR) is a commonly observed phenomenon in many cancer types. It contributed significantly to the poor outcome of many currently available chemotherapies. Considering autophagy as one of the most important physiological process in cancer progression, we thereby proposed an anti-autophagy siRNA and doxorubicin (Dox) co-delivery system (MC/D-siR) to combat MDR breast cancer using sequential construction. Our results demonstrated the potential of MC/D-siR to effectively transfect the loaded siRNA to result in significant downregulation of intracellular autophagy level in MCF-7/Adr (Dox resistance MCF-7 cell line) cells, which in turn cut off the ATP supply and to reverse the MDR and potentiated accumulated drug retention in cells. As a result, MC/D-siR showed much elevated anticancer benefits than single loaded platforms (MC/Dox or MC/siRNA), indicating the ability for effective MDR cancer treatment through the combination of autophagy regulation and chemotherapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaime R. Willis ◽  
Anthony J. R. Hickey ◽  
Jules B. L. Devaux

AbstractTemperature is a key factor that affects all levels of organization. Minute shifts away from thermal optima result in detrimental effects that impact growth, reproduction and survival. Metabolic rates of ectotherms are especially sensitive to temperature and for organisms exposed to high acute temperature changes, in particular intertidal species, energetic processes are often negatively impacted. Previous investigations exploring acute heat stress have implicated cardiac mitochondrial function in determining thermal tolerance. The brain, however, is by weight, one of the most metabolically active and arguably the most temperature sensitive organ. It is essentially aerobic and entirely reliant on oxidative phosphorylation to meet energetic demands, and as temperatures rise, mitochondria become less efficient at synthesising the amount of ATP required to meet the increasing demands. This leads to an energetic crisis. Here we used brain homogenate of three closely related triplefin fish species (Bellapiscis medius, Forsterygion lapillum, and Forsterygion varium) and measured respiration and ATP dynamics at three temperatures (15, 25 and 30 °C). We found that the intertidal B. medius and F. lapillum were able to maintain rates of ATP production above rates of ATP hydrolysis at high temperatures, compared to the subtidal F. varium, which showed no difference in rates at 30 °C. These results showed that brain mitochondria became less efficient at temperatures below their respective species thermal limits, and that energetic surplus of ATP synthesis over hydrolysis narrows. In subtidal species synthesis matches hydrolysis, leaving no scope to elevate ATP supply.


Author(s):  
Dmitry Alexandrovich Isaev ◽  
Alexander Pavlovich Glebov ◽  
Marina Yurievna Martynova ◽  
Elena Ivanovna Shishanova

Together with concentration, motility is one of the most important characteristics of sturgeon sperm, determining its quality and suitability for insemination. After activation in water, the duration of progressive sperm motility is also important, and this time should not be less than that required for fertilization. Motility of spermatozoa depends on their physiological state, maturity, age and intracellular reserves of macroergic substances. During hypothermic storage, the percentage of spermatozoa that can be activated decreases progressively due to depletion of ATP supply or cell death. To improve the hypothermic storage of sterlet sperm, we have developed salt-free preservative solution ISGT-80 based on glucose and trehalose. During storage of sterlet sperm specimens from 20 males in ISGT-80 for 18 days, we observed, along with a progressive decrease in the percentage of motile spermatozoa, an alteration in the duration of their motility. On the 3rd to 6th day of storage, the time of half-loss of motility (τ50) increased significantly by approximately 1 min on average compared with fresh samples, then gradually decreased, however, not descending to the initial value. The reasons for this prolongation of motility are not clear, but we do not exclude the predominant death of spermatozoa with a short motility duration in the first days of storage and selection in favor of long-lived spermatozoa. Such gametic selection can lead to a shift in allele frequencies at heterozygous loci in the offspring. Thus, hypothermic storage of sperm could become an attractive subject for genetic research with the aim of developing new selection tools in sturgeon breeding.


2021 ◽  
Vol 10 (2) ◽  
pp. 272-276
Author(s):  
Hainan Ji ◽  
Chang Liu ◽  
Na Tong ◽  
Naining Song ◽  
Baoliang Xu ◽  
...  

Abstract Air Potato Yam is widely used in the treatment of many conditions such as cancer, inflammation, and goiter. Diosbulbin B (DIOB) is the primary active component of Air Potato Yam, and it exhibits anti-tumor and anti-inflammatory properties. The main purpose of this study was to determine the mechanism by which DIOB induces lung toxicity, using metabonomics and molecular biology techniques. The results showed that the lung toxicity induced by DIOB may occur because of a DIOB-induced increase in the plasma levels of long-chain free fatty acids and endogenous metabolites related to inflammation. In addition, treatment with DIOB increases the expression of the cyp3a13 enzyme, which leads to enhanced toxicity in a dose-dependent manner. The molecular mechanism underlying toxicity in mouse lung cells is the DIOB-mediated inhibition of fatty acid β-oxidation, partial glycolysis, and the TCA cycle, but DIOB treatment can also compensate for the low Adenosine triphosphate (ATP) supply levels by improving the efficiency of the last step of the glycolysis reaction and by increasing the rate of anaerobic glycolysis. Using metabonomics and other methods, we identified the toxic effects of DIOB on the lung and clarified the underlying molecular mechanism.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 470
Author(s):  
Rafael Mesquita ◽  
Alessandro Gaviraghi ◽  
Renata Gonçalves ◽  
Marcos Vannier-Santos ◽  
Julio Mignaco ◽  
...  

Flight dispersal represents a key aspect of the evolutionary and ecological success of insects, allowing escape from predators, mating, and colonization of new niches. The huge energy demand posed by flight activity is essentially met by oxidative phosphorylation (OXPHOS) in flight muscle mitochondria. In insects, mitochondrial ATP supply and oxidant production are regulated by several factors, including the energy demand exerted by changes in adenylate balance. Indeed, adenylate directly regulates OXPHOS by targeting both chemiosmotic ATP production and the activities of specific mitochondrial enzymes. In several organisms, cytochrome c oxidase (COX) is regulated at transcriptional, post-translational, and allosteric levels, impacting mitochondrial energy metabolism, and redox balance. This review will present the concepts on how COX function contributes to flying insect biology, focusing on the existing examples in the literature where its structure and activity are regulated not only by physiological and environmental factors but also how changes in its activity impacts insect biology. We also performed in silico sequence analyses and determined the structure models of three COX subunits (IV, VIa, and VIc) from different insect species to compare with mammalian orthologs. We observed that the sequences and structure models of COXIV, COXVIa, and COXVIc were quite similar to their mammalian counterparts. Remarkably, specific substitutions to phosphomimetic amino acids at critical phosphorylation sites emerge as hallmarks on insect COX sequences, suggesting a new regulatory mechanism of COX activity. Therefore, by providing a physiological and bioenergetic framework of COX regulation in such metabolically extreme models, we hope to expand the knowledge of this critical enzyme complex and the potential consequences for insect dispersal.


2021 ◽  
Author(s):  
Jana Královičová ◽  
Ivana Borovská ◽  
Reuben Pengelly ◽  
Eunice Lee ◽  
Pavel Abaffy ◽  
...  

Abstract Ca2+-insensitive and -sensitive E1 subunits of the 2-oxoglutarate dehydrogenase complex (OGDHC) regulate tissue-specific NADH and ATP supply by mutually exclusive OGDH exons 4a and 4b. Here we show that their splicing is enforced by distant lariat branch points (dBPs) located near the 5′ splice site of the intervening intron. dBPs restrict the intron length and prevent transposon insertions, which can introduce or eliminate dBP competitors. The size restriction was imposed by a single dominant dBP in anamniotes that expanded into a conserved constellation of four dBP adenines in amniotes. The amniote clusters exhibit taxon-specific usage of individual dBPs, reflecting accessibility of their extended motifs within a stable RNA hairpin rather than U2 snRNA:dBP base-pairing. The dBP expansion took place in early terrestrial species and was followed by a uridine enrichment of large downstream polypyrimidine tracts in mammals. The dBP-protected megatracts permit reciprocal regulation of exon 4a and 4b by uridine-binding proteins, including TIA-1/TIAR and PUF60, which promote U1 and U2 snRNP recruitment to the 5′ splice site and BP, respectively, but do not significantly alter the relative dBP usage. We further show that codons for residues critically contributing to protein binding sites for Ca2+ and other divalent metals confer the exon inclusion order that mirrors the Irving-Williams affinity series, linking the evolution of auxiliary splicing motifs in exons to metallome constraints. Finally, we hypothesize that the dBP-driven selection for Ca2+-dependent ATP provision by E1 facilitated evolution of endothermy by optimizing the aerobic scope in target tissues.


Sign in / Sign up

Export Citation Format

Share Document